

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

INSTRUMENTATION OF A LINUX-BASED

MOBILE DEVICE

 Tekijä Harri Luhtala

 Valvoja Juha Röning

 Toinen tarkastaja Thomas Schaberreiter

 Työn tekninen ohjaaja Christian Wieser

Kesäkuu 2015

Luhtala H. (2015) Instrumentation of a Linux-based mobile device. University of

Oulu, Department of Electrical Engineering. Master’s Thesis, 50 p.

ABSTRACT

Sensitive information are extensively stored and handled in users’ mobile devices

that sets challenges in terms of information security. One of the main targets of

malicious mobile applications is to steal sensitive information. Mobile devices

need tools and mechanisms to provide visibility how applications access sensitive

system resources and handle information. Security assessment for a randomly

selected application in a resource-constrained mobile environment requires an

overall understanding of the target system and might involve a significant amount

of work for selecting a suitable monitoring method.

This thesis presents two extensions on top of general purpose instrumentation

tools. The instrumentation tools and developed extensions are executed on a

Linux-based mobile device in order to monitor the behavior of applications. An

application monitor extension is used for providing an overview of system

resource usage by monitored application. Network monitor extension is used for

analyzing content of the network traffic in real-time for selected application layer

protocols. Additionally application layer data is monitored from intercepted

secure connections based on user defined keywords. Developed instrumentation

extensions were successfully used in a Linux-based mobile device to monitor

applications’ resource access and sensitive information from outbound network

traffic. The approach selected for real-time network traffic analysis provided

promising results while not causing significant performance problems for the

mobile device.

Key words: application instrumentation, system monitoring, security assessment.

Luhtala H. (2015) Linux-pohjaisen mobiililaitteen instrumentointi. Oulun

yliopisto, sähkötekniikan osasto. Diplomityö, 50 s.

TIIVISTELMÄ

Arkaluontoista tietoa käsitellään ja tallennetaan laajamittaisesti käyttäjien

mobiililaitteissa, mikä asettaa haasteita tietoturvallisuudelle. Yksi tärkeimmistä

vahingollisten ohjelmistojen tavoitteista on varastaa luottamuksellista

informaatiota. Mobiililaitteet tarvitsevat työkaluja ja mekanismeja tarjoamaan

näkyvyyttä miten ohjelmistot käsittelevät informaatiota ja arkaluontoisia

järjestelmän resursseja. Sattumanvaraisesti valitun sovelluksen tietoturva-

arviointi resurssirajoittuneessa mobiililaitteessa vaatii järjestelmän

kokonaisvaltaista ymmärtämistä ja voi sisältää huomattavan määrän työtä

soveltuvan monitorointimenetelmän valitsemiseksi.

Tässä diplomityössä esitetään kaksi laajennusta yleiskäyttöisiin

instrumentointityökaluihin. Instrumentointityökalut ja laajennukset suoritetaan

Linux-pohjaisessa mobiililaitteessa sovellusten käyttäytymisen tarkkailemiseksi.

Application monitor -nimistä laajennusta käytetään tuottamaan yleisnäkymä

tarkkaillun sovelluksen järjestelmäresurssien käytöstä. Network monitor -

nimistä laajennusta käytetään reaaliaikaisesti analysoimaan

tietoverkkoliikenteen sisältöä sovelluskerroksen protokollille. Lisäksi suojattujen

yhteyksien sovelluskerroksen dataliikennettä tarkkaillaan määritettyjen

avainsanojen perusteella. Kehitettyjä instrumentointilaajennuksia käytettiin

onnistuneesti Linux-pohjaisessa mobiililaitteessa tarkkailemaan sovellusten

järjestelmäresurssien käyttöä ja luottamuksellista tietoa ulosmenevästä

dataliikenteestä. Valittu lähestymistapa reaaliaikaisen dataliikenteen

tarkkailemiseksi tuotti lupaavia tuloksia vaikuttamatta merkittävästi

mobiililaitteen suorituskykyyn.

Avainsanat: sovelluksen instrumentointi, järjestelmän monitorointi, tietoturva-

arviointi

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION .. 7

2. MOBILE SYSTEM SECURITY .. 9

2.1. Information security .. 9

2.2. Threats and attack vectors ... 10

2.3. Platform security ... 11

2.4. Access control and enhancements ... 12

2.5. Hardware enforced security ... 14

3. SOFTWARE INSTRUMENTATION .. 16

3.1. Instrumentation methods ... 16

3.2. Tools .. 16

3.2.1. Kprobes .. 17

3.2.2. Ftrace ... 18

3.2.3. Systemtap ... 19

3.2.4. LTTng .. 20

3.2.5. Ktap.. 20

3.2.6. Audit .. 21

3.2.7. Summary .. 23

4. INSTRUMENTATION MODULES .. 25

4.1. Application monitor ... 25

4.2. Network traffic monitor ... 29

4.2.1. Mitmproxy ... 29

4.2.2. Monitor plugin ... 31

5. TEST CASES .. 34

5.1. Target environment ... 34

5.2. Application monitor testing ... 35

5.2.1. Environment preparation ... 35

5.2.2. Audit rule configuration .. 36

5.2.3. Test sessions .. 38

5.2.4. Results analysis .. 39

5.3. Network monitor testing .. 40

6. DISCUSSION ... 45

7. CONCLUSION ... 47

8. REFERENCES ... 48

FOREWORD

I would like to thank Christian Wieser for helping with research methods at the start

point of this thesis and keeping things happening in schedule due to follow-up

meetings, and Pekka Pietikäinen for providing valuable feedback for implementation

related issues. I would also like to thank Prof. Juha Röning for offering interesting

thesis writer position at the OUSPG research group at the University of Oulu and for

supervising this work.

ABBREVIATIONS

ACL Access Control List

AVC Access Vector Cache

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CA Certificate Authority

CN Common Name

CPU Central Processing Unit

DAC Discretionary Access Control

DNAT Destination Network Address Translation

GID Group Identifier

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IMEI International Mobile Equipment Identity

IP Internet Protocol

IPC Inter-process Communication

LSM Linux Security Module

MAC Mandatory access control

MITM Man-in-the-middle

NAT Network Address Translation

OS Operating System

PID Process Identifier

SAN Subject Alternative Name

SNI Server Name Indication

SSL Secure Socket Layer

TCP Transmission Control Protocol

TID Thread Identifier

TLS Transport Layer Security

UDP User Datagram Protocol

UID User Identifier

URI Uniform Resource Identifier

XMPP Extensible Messaging and Presence Protocol

1. INTRODUCTION

Mobile devices are available on the market from entry-level devices without Internet

connectivity to high-end devices with relatively huge amount of features and

computing power. For example in mobile handset category, devices classified as

smartphones, have overtaken lead position from entry-level cell phones in many

countries [1]. According to the first quarter of 2014 mobile threat report by F-Secure

labs, mobile malware continues to focus on the Android devices. Especially third-party

application stores provide high number of malicious applications [2]. The majority of

malicious mobile applications are intended to steal user’s personal information and

have financial targets [3]. Consequently, the security and privacy community and the

industry have an increased interest to focus on mobile devices’ security issues.

Early mobile devices used to be closed systems, where functionality was not

possible to be extended by installing third-party applications and the only Internet

connectivity option was a trusted cellular network [3]. The security aspect of mobile

devices were totally different what it is nowadays. Rich feature set and multiple

connectivity options of the recent mobile devices have added challenges in terms of

information security. In addition, mobile devices store great amount of personal and

company confidential information including emails, passwords and location.

Mobile device ecosystem consists of several stakeholders, who have a different

interest for device security. For example device user wants personal information to be

stored safely and device manufacturer prevents tampering of the device so that any

hardware parameters cannot be changed. Operators protect their business model by

offering subsidized devices and application developers are interested in protecting

source code of the application and mobile platform providers protect against malicious

application installations. [3]

Security vulnerability infection mechanisms are moving very quickly from desktop

computers to mobile devices. Mobile devices providing security-critical functions and

lacking proper security implementation altogether makes them vulnerable for security

threats. Mobile devices need to provide software and hardware based device security

mechanisms. Hardware based mechanisms are created in order to prevent simple

device tampering attempts. Software based mechanism protect against external threats.

The most crucial software based protection is process isolation, usually called

sandboxing, which isolates each application into a private execution and storage

environment. [3, 4]

Linux-based mobile devices implement applications access control restrictions

using different approaches. One platform might count solely to the traditional style

permissions for all third-party applications, while other platforms have dedicated user

identifier assigned per application. Per application user identifier approach enable

specific access control definition for each application. Usually native applications

provided by platform manufacturer run with privileged user permissions. [5]

Mobile devices are extensively integrated with the Internet using cellular and

wireless technologies that make them an attractive and susceptible target for criminal

intent to exploit them. Every once in a while appears that an application with a

malicious intent has managed to pass verification process of an application store.

Obviously, the verification process cannot reject every single malicious application.

On desktop computers the most common method of antivirus scanner uses a classical

signature based malware detection mechanism. The signature detection is based on

already identified characteristics of malware samples. Malware detection on mobile

8

devices is a challenging task due to limited processing power. The signature based

approach is not the most suitable option for mobile devices, because matching

algorithm running on background cause heavy burden on CPU and faster battery

exhaustion [6]. In considering these issues, mobile devices should have security

mechanisms against malicious applications and be equipped with an ability to monitor

applications within the device in order to discover malicious behavior, and identify

sensitive information leakage. To address this shortage, this thesis will discuss

software instrumentation methods and tools for a Linux-based mobile device.

Monitoring extensions are developed on top of the existing instrumentation tools and

used for providing input data for a security assessment whether an application is acting

against its expected behavior. In addition, sensitive information are monitored from

the Internet traffic based on defined keywords.

9

2. MOBILE SYSTEM SECURITY

The security is an important part of the mobile devices. Functionality of security

mechanisms need to be addressed in every layer of software stack and as well on

hardware level [3]. In the Linux-based operating system a good level of security is

already built-in and can be optionally extended by security modules. This chapter gives

an overview of information security and discuss software and hardware based security

solutions used in Linux-based mobile devices.

2.1. Information security

The history of information security begins with a need to secure computer’s physical

location, hardware and software. During the early years of information security the

primary security threats were physical theft of equipment, espionage against the

products of the system and sabotage. To maintain national security during the World

War II eventually lead to sophisticated security solutions. The movement towards

security that went beyond safety of physical locations began with a study sponsored

by advanced research project agency (ARPA). The study was focused on a process to

secure classified information systems and it attempted to define necessary mechanisms

for protecting them. The Internet was made available for general public in 1990s,

which brought connectivity between computers. Early Internet era deployment was

treating security as a low priority and relied on a security provided by data centers.

However, ability to physically secure networked computers was lost and stored

information became more exposed to security threats. [7 p. 3 - 8]

The information security can be defined as protection of information and its critical

elements. The industry standard for information security model is called

confidentiality, integrity and availability triangle. It defines information

confidentiality as protection from disclosure or exposure to unauthorized persons or

systems. The confidentiality of information is high when it is a personal information.

When the information is complete and uncorrupted, it has integrity. Corruption of

information can take place when it being transmitted, stored or intentionally modified

by a computer virus. Information corruption is not necessarily caused by external

forces. For instance, noisy transmission can cause data to lose its integrity. The

availability enables authorized persons and computers to access information and

receive it in the required format. [7 p. 8 - 15]

Information system consists of components that enable information handling,

which are entire set of software, hardware, data, people and networks that each have

own security requirements. Software comprises applications, operating system and

utilities. Exploiting of errors in software implementation forms substantial portion of

attacks against information system. Hardware provides technology that executes the

software and provides interfaces for information handling. Security policies define

hardware as a physical asset. Data is often the most valuable part of information system

and it is the main target of attacks. Data storage is likely to use database management

systems, which should utilize all available security capabilities to improve overall

information system security. The people have always been a threat for information

systems that refers to vulnerabilities caused by system users. The security leverage

need of information system is mainly caused by networking. The network security

mechanisms are essential part of the information system security. [7 p. 16 - 19]

10

2.2. Threats and attack vectors

Mobile devices encounter various threats depending on usage environment. For

instance, threats might appear in a form of another malicious application or an

adversary on the same local network. Vulnerable application implementations can be

suffering in many fields, these include insecure data storage, insufficient transport

layer protection, outdated cryptographic algorithms and many more. A security

weakness exists when application developer assumes that other applications in the

system are not able to access sensitive data storage. However, a malicious application

might have gained enough privileges to read file system’s sensitive storage. Same sort

of weakness for sensitive data occurs when an application developer unintentionally

uses a system mechanism, which stores data temporarily for easily accessible

locations. For instance, keyboard press caching or copy-paste buffering might use

storage locations available for unprivileged users. Mobile applications tend to lack

proper implementation of transport layer security or it is enabled only for

authentication phase. Thus adversary in the same local network is able to monitor

network traffic and capture sensitive data. Application data encryption implementation

might use cryptographic algorithms, which are commonly known to have a significant

weakness or does not fulfill modern security requirements. Alternatively custom made

algorithms have been used for data encryption, which does not give enough protection.

Application can accept input data from various sources without performing proper

input validation and can allow an inter-process communication with other applications.

For instance, business application handling sensitive data should restrict

communication only for trusted applications, because sensitive data passed through

inter-process communication may be read by third-party application in certain

conditions. [9]

Attack vectors are methods used to get into device that enable intruders to exploit

vulnerabilities in the device. Mobile device attack vectors can be roughly classified in

vulnerabilities that require a physical access to the device and vulnerabilities that can

be exploited remotely. Remotely exploited attack vectors can be further classified

technical and non-technical vulnerabilities. Mobile web browser is a good example of

technical and software based attack vector, which has led to various exploited

vulnerabilities in the recent past. The non-technical attack vector tricks the user into

overriding technical security mechanism. [5]

Drive-by download is an attack method taking advantage of bugs in a software,

usually in web browsers. Visiting a compromised web page is enough to initiate

background download of malicious code. Websites are used to exploit known

vulnerabilities in the web browser or plug-ins and execute attacker’s code. Initial

download is often small and its job is to pull the rest of the malicious code to the target

device. This kind of attack has significant impact for the system security, because the

attacker can execute code without user’s knowledge. A social engineering attack

targets primarily to a human element of the system without gaining a physical access

to user’s device. The user of the device is tried to be convinced to either download a

malicious application or access malicious content on the website. The user may easily

install malicious application that requests extensive permissions for system resources,

and let the application bypass sandbox restrictions. Advantage over desktop computer

environment in the most mobile systems is that user is able to review requested

application permissions and then proceed in installation process. [8]

11

2.3. Platform security

A mobile platform consists of operating system (OS) kernel and middleware

components [3]. The middleware provides system libraries and services that are used

by system components and applications. Inter-process communication (IPC)

framework is responsible of providing communication facilities between applications

and services. The IPC framework enables communication between software

components, which are hence able to utilize functionalities exported by each other.

Application requests to system resources are typically handled by a corresponding

system service. The system service receives a request through IPC and then performs

actual resource access, for instance an information request for a peripheral device.

Security model in mobile platforms are based on software isolation, access control and

cryptographically signed applications.

The software isolation is also known as sandboxing of application’s execution

environment. Sandboxed application is confined so that the application is not able to

directly access another application’s data storage. It is also possible to divide

applications for separated domains based on application type. Domains may define

different restriction levels for business applications that are used to handle confidential

data and another level for third-party applications. Application process address spaces

are also separated from one another, additionally process address space randomization

may be used and memory areas can be set as non-executable. Intention to limit memory

execution addresses is to prevent malicious applications from modifying its code and

affecting to execution of other processes. A runtime buffer overflow exploit takes

place when adversary utilizes software vulnerability and modifies a call stack return

address to a memory segment containing injected code by attacker. Memory page

configuration as non-executable prevents attacker injected code execution. [3]

The access control mechanisms implement permission based model where system

resources usage can be limited. Platform provider sets permissions required to access

exposed APIs of system services. Also third-party developed services define required

permission to access API. Large number of dedicated permissions allow accurate

control policy, but might be difficult to understand. Respectively coarse permission

control levels might violate least privilege principle, in which application must be able

to access only resources that are necessary for its operation. [10]

A software distribution model varies across mobile device platform manufacturers.

Several options exist for the distribution model. Applications can be installed from

platform provider hosted application store. In addition, multiple auxiliary stores and

direct application loading to the device might be allowed, the latter one is also called

application sideloading. The application signing is done by application store operator

after the application is verified to fulfill a publication criteria. Additionally a developer

signing is used to prove the origin of the application at the time of updating a new

version of an existing application. An application distribution package contains a

manifest file that defines which protected system APIs are required by application.

Platform application installer component is responsible to check the signature and the

manifest file and then verify that application signing authority is allowed to grant

requested permissions. Additionally user might be prompted to approve access to user

sensitive data, such as address book and calendar. Finally application installer assigns

requested permission to the application in the installation process. [3]

12

2.4. Access control and enhancements

Computer system security is growing problem, which is seen by endless stream of

security vulnerabilities. Security research has produced numerous access control

mechanisms to improve system security. Linux security model assigns a unique

identifier for every user and group, which primary use is to determine ownership of

system resources and control process permissions accessing those resources.

Traditional file permission model is sufficient for most applications, it defines

permissions for each file and directory. However, often finer control over permissions

for users and groups is needed. The Linux security module (LSM) framework address

this problem by providing a general purpose framework to Linux kernel, which allows

security modules to be implemented as loadable kernel modules. [11, 12]

File system and process privileges

An extension for the traditional file permission model is called an access control list

(ACL), which allows permission to be specified per user or per group. Minimal ACL

configuration is equal for the traditional model, where permissions are defined

separately for user, group and other. The ACL is actually a series of entries, each

defining permissions for individual user or a user group. An ACL entry consist of tag,

qualifier and permission fields. The tag specifies whether entry applies for a single

user or a group of users. The qualifier field is an optional one, and it is used to define

certain user or a group identifier for the entry. [11 p. 319 – 337]

Discretionary access control (DAC) is a standard security mechanism in a Linux

based operating system that runs each process under specified user and group. The

DAC has a disadvantage when vulnerable process gets exploited, and the attacker

gains access to all resources that run under the same user and group as the exploited

process. This issue takes place because of coarse granularity of permissions in the

DAC system. In addition, owner of a resource can decide how resource can be accessed

by other processes.

Linux capabilities scheme is used to divide traditional all-or-nothing process

capability model into individually enabled capabilities. Capabilities are used to allow

certain program to perform privileged operations. The traditional model divides

processes in two categories; processes which bypass all privilege checks and processes

whose privileges are checked according to user and group IDs. Processes bypassing

all checks are called super-user and its user ID is set to zero. The traditional model

have a coarse granularity over the process privilege control and it does not have a

mechanism to permit a single privileged operation for an unprivileged program.

Allowing certain privileged operation by changing effective user ID temporarily to the

super-user, also permits process to perform other privileged operations as well. This

kind of privilege control mechanism opens number of possibilities for malicious users

to perform unwanted operations. In the modern Linux system an application process

can have one or more capabilities, which are grouped for permitted, effective and

inheritable sets. The permitted set limits for capabilities which can be added for

effective and inheritable sets. If process drops a capability from its permitted set, it can

never acquire it back again by itself. The effective set is the one, which kernel uses for

privilege checking for the process. [11 p. 797 – 806]

13

Security enhancements

Mandatory access control (MAC) provides fine-grained permission levels that can

restrict damage. The MAC is a system where operating system is used to constrain

processes performing an operation for system resources. A security policy defines

restrictions how resources can be accessed, it is loaded at the startup of the system.

Typically system administrator is the only user who can change the security policy.

[12, 14]

Various Linux security modules (LSM) have been implemented, which provide

security improvements such as fine-grained MAC and reduction of an attack surface.

Linux security modules are security extensions, which are hooked on important

security-critical points of the Linux kernel. Linux security module framework provides

hooks into kernel components that can be utilized by LSMs to perform access control

checks. Currently only one LSM can be enabled at the time, although stacking support

of multiple LSMs have been under discussion in the community several times. The

security module hooks are implemented in a way that existing frameworks such as

standard DAC are not disturbed. LSM hooks are not invoked when functional error is

detected or classical security check denies requested operation. [12, 14] Linux security

module architecture for secure enhanced Linux is presented in Figure 1.

Figure 1. Security enhanced Linux architecture

Security-Enhanced Linux (SELinux) is one of the LSM extensions that implement

MAC security improvements. It is included in number of Linux distributions by

default. The SELinux development was originally started as Flux Advanced Security

Kernel (FLASK) and then further developed by National Security Agency (NSA). The

SELinux is not intended to stop buffer over-runs or malware applications getting into

14

system, instead it can limit damage they cause. Android mobile operating system has

also adopted the SELinux as a part of its security model. The SELinux was first

enabled in a permissive mode for the Android, in which permission denials are logged,

but not enforced. Full enforcement mode was enabled for Android 5.0 release [15].

SELinux policy component defines allowed access types and operations for system

resources [14]. Policy decision making component is separated to own component

called security server. Access vector cache (AVC) is a component which caches

security server access decisions to minimize overhead. The policy enforcement

functionality is implemented in kernel subsystems. Application processes can be

confined to its own domain and allow only minimal set of privileges to perform its job.

SELinux assigns a type security identifier in the security context of various system

resources that have associated permissions to define what operations are allowed. This

model is known as type enforcement.

SELinux requires the security context to be associated for resources that are used

by security server to make access decision against policy [14]. In general, every subject

and object in the system have an associated security context. For instance, a system

process could be a subject and a file could be an object. The security context is defined

as variable length string and it is also called security label. The security context

consists of user, role and type identifiers. The user and the role identifier are used by

the policy to define constrains based on identifier values. When the type identifier is

used with a process, it identifies processes or domains that user can access. In case of

type identifier is used for object, it defines what permission user has for it. In addition

object gets automatically an object class identifier when it is instantiated. SELinux

policy rule definition is shown in Figure 2.

Figure 2. SELinux policy rule definition

Figure 2. illustrates how SELinux policy rule is defined to allow process running in

unconfined_t domain to perform transition of target process to ext_gateway_t domain.

2.5. Hardware enforced security

TrustZone technology is a security extension used in ARM microprocessors. It

provides a secure domain or secure world for security-critical software execution. For

example mobile payment and virtual keypad for credentials input are potential

software modules to be executed in secure world in order to separate it from normal

execution environment. The secure world is able to access memory of the normal

mode, but access is not possible the other way round. The secure world is implemented

as logical ARM core, which is able to utilize memory management unit to further

divide the secure world to sub-zones. Additionally, any of the system peripherals and

interrupts can be allocated for secure world, thus general purpose OS running on the

normal mode is not able to access those peripheral neither see interrupts. Secure world

15

can be configured to run dedicated operating system or synchronous library in the

simplest option. [4, 16]

Virtualization is a security mechanism that enables the abstraction of system

resources. It is implemented by placing a relatively small control program called

hypervisor or virtual machine monitor (VMM) between OS and the hardware. In full

virtualization privileged and sensitive instructions are trapped, while user level

instruction run at native speed. Typically modern computer architectures can execute

in multiple operation modes with respective privilege levels. Traditionally in the ARM

architecture privilege levels are called user and supervisor modes. Operating systems

are designed to execute in the privileged mode. However, in the virtualized

environment the VMM needs to run in the most privileged mode available in the

system. The VMM runs in a privileged mode and hosts one or more guest OSs, which

operate under illusion to have an exclusive access for system resources. Prior to

hardware virtualization extensions, full virtualization was possible only using dynamic

binary translation. Performance of the dynamic binary translation is not even close to

execution speed of native system code. To address this issue, hardware assisted

virtualization extensions have been added for mobile system on-chips. The ARM

architecture hypervisor mode is added to support hardware assisted virtualization

technology. To enhance system security, one guest OS can be dedicated for security

critical functions, while another guest OS is dedicated for less critical applications. [4,

17]

16

3. SOFTWARE INSTRUMENTATION

Many approaches to gain understanding of application’s internal behavior are

available for the Linux environment [10]. Tools are useful for determining

performance issues of the system and in addition provide a trace output to track

application’s behavior. Instrumentation is a technique to analyze and modify the

behavior of the application by inserting additional code into it [18]. The

instrumentation can be implemented on source code or binary level. A static

instrumentation refers to a source code level instrumentation and generates persistent

modifications for an executable. A dynamic instrumentation is a code injection for an

executable at runtime, thus no permanent modification are made for a binary. This

chapter discuss instrumentation methods and tools, which are relevant for

understanding application monitor functionalities presented later in this thesis.

3.1. Instrumentation methods

The main difference between instrumentation methods are level of the information that

can be produced, a performance impact generated for the instrumented application and

a capability to directly instrument a binary object [10]. The application can be analyzed

as a white box, when source code is available. Instrumentation code can be added for

relevant points of the application and then recompiled to provide trace output.

Different analysis methods has to be used when the application is available only as

binary executable. This is called a black box executable analysis. In the black box

analysis behavior of the application can be analyzed by monitoring an interaction with

the operating system. Monitoring of the application’s OS interface usage can take

place for system calls, inter-process communication, signals and other interesting

events. It exposes information how the application uses filesystem, network sockets

and memory.

Thorough instrumentation of application behavior on the mobile device is not a

trivial task, and might be even impossible because of limited operating system

configuration. Typically an end-user configuration of the mobile device includes a

subset of useful debugging and monitoring facilities due to performance and security

reasons. However, most of the Linux-based mobile devices provide built-in system

utilities in order to perform basic level instrumentation of applications. For detailed

application and system instrumentation purpose, there are selection of advanced

software instrumentation tools that can be installed to the system. Additionally mobile

OS kernel can be even recompiled to enable features required by the instrumentation

tools.

3.2. Tools

Various instrumentation tools are available depending on processor architecture and

operating system. Most of the instrumentation tools are designed primarily for general-

purpose architectures. Mobile devices are typically built on top of ARM architecture,

which limits availability of instrumentation tools [19]. The Linux environment can be

instrumented in several ways using utilities available in Linux mainline release.

Instrumentation frameworks and tools are capable of instrumenting the Linux system

on various levels such as user-space, file system, subsystems and system call interface.

17

Furthermore, presented instrumentation tools are suitable to be used in mobile devices

built on top of the ARM architecture. Usually Linux instrumentation does not require

patching of the kernel, but might involve modifications of kernel configuration

depending on the target device. Instrumentation tools are presented in such order that

underlying mechanisms providing certain kernel level tracing facilities are presented

first, and then proceeding to instrumentation frameworks in subsequent chapters.

3.2.1. Kprobes

Kprobes is a dynamic instrumentation mechanism for Linux kernel, which allows

information gathering without a need to compile or reboot the kernel. It was initially

developed to be underlying mechanism for higher level tracing tools. The kprobes is

organized in way that its functionalities can be easily extended by other tools. Kprobes

package consists of user defined probe handlers, kprobes manager and architecture

dependent exception handling mechanisms. [20, 21]

A kernel probe is a set of handlers placed for certain instruction address, which are

executed when a breakpoint is hit [22]. The original instruction at the breakpoint

address is executed when handler returns and context restore is performed. There are

three probe types available: kprobes, kretprobes and jprobe. A kprobe can be inserted

on any instruction address in the kernel. The kprobe is also called as pre-handler,

because it is executed before the probed instruction. The kretprobe is executed when

probed function returns, it is also known as post-handler. Figure 3 presents simplified

kprobe handling steps.

Figure 3. Simplified kprobe handling flow

The jprobe is inserted at the entry point of the kernel function, providing access for

function parameter values. User defined probe instrumentation code is packed to a

loadable kernel module that handles registration and unregistration of probe handlers

at kernel module’s entry and exit functions respectively. Actual implementation of the

kprobes heavily depends on processor architecture. For instance, an exception-

handling mechanism to support probe points varies across processor architectures.

18

3.2.2. Ftrace

Ftrace is a framework of several tracing utilities for debugging and analyzing kernel

internals [23]. The ftrace is a suitable tool for tracing performance and latency

problems within the kernel. A debug file system is used to hold ftrace control and

output files. The ftrace is also used as a building block for other system monitoring

tools. The framework consists of several tracers, and the most relevant ones are

explained below.

Function tracer

A function tracer is able to trace all kernel functions, its output contain function name

and additional fields configured with trace options [23]. The trace options control data

items and format of the ftrace output. Various data items can be included for output,

such as a caller of the function and symbol related information. A function graph tracer

does similar things as the function tracer, but it probes a function from its entry and

exit points. On function entry point the graph tracer overwrites return address with a

probe and original return address is stored in task structure. This enables function

execution time measurement and provides reliable call stack for function call graphs.

Dynamic ftrace

A dynamic ftrace feature provides runtime control to enable tracing of selected kernel

functions [23]. Runtime control is an essential feature to reduce overhead generated

by tracing activity and it also reduces unnecessary output of the tracing session.

Dynamic ftrace feature is a compile time option and it utilizes compiler’s profiling

option, which adds a call to a profiling function at the beginning of each kernel

function. Responsibility of the profiling function is to check whether to call tracing

function or just directly return. As the profiling function gets called a lot, it is carefully

optimized to avoid performance issues. All profiling references are collected into

single table in the linking stage of the kernel. On kernel boot up phase each of the table

locations are replaced with a no-operation instruction and corresponding functions are

made available for function filter list. When certain function is enabled for tracing,

respective table location is modified back into trace call.

Event tracer

Kernel introduces compile-time defined static tracepoints, which are commonly

referred as events in ftrace context. There are hundreds of events defined, which are

organized based on kernel subsystems. Events can be enabled separately or in groups

for an entire subsystem. All ftrace events contain common and event-specific data

fields. As an example, process exit event is illustrated in Figure 4.

19

Figure 4. Process exit event

Each event has an associated filter expression, which controls whether a specific event

is allowed to be added on trace output. The filter expression defines multiple numeric

and string operators to test field values. The filter expression covers entire subsystem

or only a single event. A trace event has an associated trigger capability, which is used

to invoke commands. These commands can be invoked conditionally when the trace

event is hit. Commands can be used to enable or disable other events, dump stack trace,

take a snapshot of event at the time of trigger occurred or control entire tracing system

state.

3.2.3. Systemtap

Systemtap is a dynamic instrumentation tool targeted for performance and functional

problem solving of Linux kernel [24]. It provides an infrastructure to monitor running

Linux kernel eliminating a time consuming process for recompile, install and reboot

sequence. The systemtap is built on top of the Kprobes and kernel static tracepoints.

The essential idea behind the Systemtap is to write handler scripts for events generated

by the monitored system and tool itself. Scripts can be defined to react to several types

of the kernel and the Systemtap internal events, such as a timer expiration, entering

specific kernel function or a system call. A systemtap library provides wide variety of

reusable scripts for system instrumentation purpose.

The systemtap operates by using the system C compiler to translate a handler script

to a loadable kernel module. A command line utility is used to invoke a probing

session. In turn kernel module gets loaded and it hooks the probes into the kernel. The

handler function is executed when hooked event occurs. Hooks are unregistered and

the kernel module is unloaded as a final step of probing session. [24]

Generated instrumentation code needs to be placed exactly right place in the Linux

kernel, this requires system information packages to be available for the Systemtap.

Linux kernel debug information is provided in development packages for desktop

Linux distributions, which need to be exactly matching for installed kernel version.

This is not the case for the most mobile devices running on top of the Linux kernel,

hence requires Linux kernel compilation as a preparation of using the Systemtap.

20

3.2.4. LTTng

Linux Trace Toolkit next generation (LTTng) is an instrumentation framework for

correlated tracing of the Linux kernel, user-space and libraries [25]. The LTTng

consists of user-space trace libraries, kernel modules and tools for controlling tracing

session. The kernel modules are needed when intention is to produce trace output from

the kernel itself. User-space trace libraries are required when intention is to trace user-

space applications. Linux kernel static tracepoints, kprobes and performance counter

instrumentation facilities are supported through adaptation layer. Trace output format

is a common trace format (CTF), which is a compact binary format containing packets

of concatenated trace events. In order to analyze trace data, it is required to be

converted to human readable text output.

Actual tracing session contains attributes and object for tracing. The tracing session

defines domains to be traced and channels associated with them. Domain in LTTng

context means kernel or user-space. A channel specifies parameters such as buffering

mode, context information and list of events associated with the channel. Event can be

separately enabled or disabled within the tracing session. The context information

fields can be optionally added for generated events, which describe process

information and performance counter values at the time of generating an event.

User-space application tracing for functions entry points take place with help of

compiler’s function instrumentation option. A compiler can be instructed to generate

instrumentation calls for entry and exit of the functions, which are hooked by user-

space tracing libraries of the LTTng. Additionally, static instrumentation can be

performed using tracepoints, which can be placed at any point of the application.

Tracepoints are defined either manually or generated using tracepoint tools. Custom

argument expression of tracepoints makes it very flexible for tracing of user space

applications. A tracepoint may have assigned an optional log level field that can be

useful in tracing session control to limit amount of generated tracepoint events.

Several options exist for trace output viewing; tracing session can be configured to

show events as they arrive, record events locally to files or even relay events to remote

machine. Built-in feature of sending trace events over the network to remote machine

is implemented for relay daemon component, which receives events on the remote

system.

3.2.5. Ktap

Ktap is the most recent addition for the Linux dynamic instrumentation facilities, it

has been designed toward needs of embedded users. The ktap tool is still on

development phase and hence not available in the kernel mainline. The ktap differs

from other mainstream instrumentation tools in way that it is a scriptable utility, which

bases on a byte-code interpreter [26]. This design decision have an advantage that it

omits a need for a compiler toolchain installation in the target system. The ktap

operates using a special kernel module, which implements a virtual machine to

interpret ktap scripts. Ktap scripting language is relatively simple and efficient, though

it supports multiple features that are beneficial for dynamic tracing needs, such as

control structures and built-in function library. More flexibility is introduced over the

kernel built-in facilities due to tracing block definition can be used to collect additional

data at the time of tracepoint hit. For instance, a backtrace of executing kernel task and

value of global variables can be stored in associative array using built-in functions and

21

data can be printed out when tracing session ends. Other instrumentation utilities

presented in the previous chapters such as tracepoints, kprobes and function tracer are

supported in the scripting language.

3.2.6. Audit

Linux Audit system is a monitoring framework to collect information about system in

a form of Audit events. Rather than providing any additional security, Audit can be

used to collect security relevant information about the system it is running. Properly

configured Audit system makes possible to detect and analyze attacks againts the

system. Audit rules are used to define which events are to be caught to a log file. This

information can be used to determine violator of system security policy and details of

operation. Audit consist of several components, each providing important functionality

for overall framework. Audit components can be categorized for two main parts: user

space utilities and kernel side system call processing module. [27, 28] Linux Audit

framework components and their connections are presented in Figure 5. Solid line

presents data flow and dashed control flow.

Figure 5. Components of the Linux Audit framework.

Audit kernel component

Audit kernel component responsibility is to filter system calls received from user space

applications and deliver events to user space audit daemon based on activated rules.

The Audit kernel component implements three rule lists: user list for requests

originated in user space, task list for clone and fork system calls and exit list for system

call exit. The rule lists are processed in presented order. A system call can trigger just

one rule from the lists, i.e. the first matching rule generates the Audit event. Exclude

list is processed as a final step to check whether filter is enabled for particular event

type. Actual system call processing takes place between the user and task lists, which

means that limited number of rule option fields have usable value at the time of the

user list processing. [27]

22

Audit daemon and utilities

Audit daemon (auditd) is user space part of auditing, which allows inspection of

system activities in great detail. Audit generates events based on rules, which are

triggered by a system call or a file system access. Audit daemon is responsible for

writing events received from kernel interface to audit log. Audit daemon configuration

defines several options such as log file format, log file path, event rate limit and actions

to be taken in case of disk full. Audit framework control happens through audit control

utility (auditctl), it controls rule settings and changing of parameters for the kernel

module. Audit search (ausearch) is a post-processing utility for filtering certain events

from audit log file. Several filtering keys and event field values can be used as a

filtering parameter. Audit dispatcher daemon (audispd) can be used to deliver events

in real time to other application as well, hence enabling audit plugin implementation.

Audit trace (autrace) is a process tracing utility designed for collecting audit events for

a single application process. It does similar thing as strace, a well know system call

tracing utility for Linux. Audit report utility (aureport) creates custom event reports

out of audit event log. [27, 28]

Audit rules and events

Audit file system rules are used for watching access to files or entire directories. The

file system rule defines a path and access types to trigger an event. Access type defines

read, write and attribute change options. System call rules are watch points allowing

more specific rule definition. The system call rule can define several field values to

fine tune triggering of an event. Audit rule definition to catch a connect system call for

D-Bus user bus socket is presented in Figure 6. The system call rule is added to the

system call exit list, which allows Audit to properly inspect return value of the system

call. In addition, it requires connect system calls to be successful, having architecture

value set to ARM and system call associated path to be user D-Bus socket.

Figure 6. Audit rule definition for system call

A rule definition can contain optional user defined key parameter, which is

automatically added for generated events. The key value is useful in log analysis to

match event log entries for a specific rule. Figure 7 presents an Audit, which has been

generated as a result for the Audit rule presented in Figure 6.

23

Figure 7. Audit event

The Audit event in Figure 7 consists of three different types of records. A path type

record describes accessed file system path. A socket address record contains exact path

for local sockets. For Internet domain sockets record data would be an IP-address and

port information. A system call record contains lot of information about system call in

question. For instance, the system call record exposes parameters of the system call

and its return value, process and parent process information, user and group IDs and

name of the command used to invoke the process.

3.2.7. Summary

Multiple instrumentation tools are available on the Linux environment that can be used

on mobile devices. However, restrictive software configuration on the mobile devices

might avoid using the most suitable instrumentation tool. Typically two main

properties of the instrumentation tools direct selection process that are level of details

required and a need for customized event output. For instance, a scriptable utility such

as the Systemtap is capable to hook on a system call and output content of memory

reference arguments. Respectively an instrumentation utility providing only

predefined static tracepoints outputs a memory reference, which obviously hides

valuable information. Key features of presented instrumentation utilities are shown in

Table 1.

Table 1. Feature comparison of instrumentation tools

Feature Ftrace Kprobes Systemtap Audit LTTng Ktap

User-space tracing x x x

Static tracepoints x x x x x

Mainlined x x x x

Output filtering x x x x

Require symbols x

Require system compiler x

Byte code interpreter x

Scriptable x x

The Table 1 contains instrumentation tools and frameworks that were presented in this

chapter. Kprobes and ftrace tools are commonly used as building blocks for other

instrumentation frameworks. The most of the presented tools have been available in

24

the kernel mainline for long time and the latest ones are still provided as patches. The

Ktap introduces scripting support while omitting need for a system compiler and

symbols. This is kind a novelty feature for kernel instrumentation.

The audit instrumentation framework was selected to be an underlying tool for a

monitoring utility implemented as part of this thesis. The audit is available in the kernel

mainline and its user-space components were also available. Moreover, it does not

require system compiler to be installed and provides good set of output filtering

utilities. Audit omits a scripting support, but that level of system call monitoring or

customized output was not needed.

25

4. INSTRUMENTATION MODULES

Monitoring extensions presented in this chapter are called application monitor and

network traffic monitor. The application monitor is implemented as control and data

processing extension on top of both the Audit instrumentation framework and proc

filesystem. The function of the application monitor is to provide a report for utilized

system resources. The network traffic monitor is a plugin extension to a Mitmproxy

interception tool [31]. The plugin extension implements keyword-based content

analysis for HTTP and HTTPS application layer data.

4.1. Application monitor

The application monitor controls the Linux Audit framework, which produces events

according to activated rules. The Audit rules define system events to be collected. The

Audit events are the main data source for the application monitor to generate a system

resource usage report. The proc file system provides information about process names

and identifiers. A startup notification of monitored application is resolved using system

call interface. Application monitor’s architecture is presented in Figure 8.

Figure 8. Application monitor architecture

The Audit framework collects data at runtime and stores events to a log file for post-

processing purpose. The Audit control interface is used to setup system wide rules for

file system paths and system calls. Process handling system call rules are used for

collecting process identifiers (PID) and thread identifiers (TID). Both the PID and the

TID values are used for filtering relevant information from the Audit log files. Some

of the functionalities in the application monitor are tightly connected to the Sailfish

operating system way to handle its activities. For instance, native application start-up

condition detection by monitoring certain system calls.

Application monitor execution

The application monitor is a console application; it is started from the command line

within the monitored device. The application monitor execution can be roughly

divided in three phases. In a preparation phase the proc file system provides details of

26

native processes that are to be assigned for started applications. Then the application

monitor is configured for observing process state changes. In monitoring phase, one

of the native applications has been started and the Audit is collecting events. In

addition, Internet domain socket information are polled from the proc file system. In

post-processing phase, the monitored application process has exited and filtering is

applied for the Audit event log.

Native application startup detection

An application startup detection feature is implemented in order to synchronize

enabling of Audit framework with the start of the monitored application. Unnecessary

events received prior to monitoring session are discarded, making analysis of Audit

events easier. Another advantage is a PID detection for monitored application.

Otherwise PID of each application process should be resolved manually before starting

the monitoring session. Application monitor execution flow is presented in Figure 9.

Figure 9. Application monitor execution flow

27

The application monitor detects a startup condition of the native applications by

attaching a tracer for each booster process. The native application startup detection

method bases on a principle how applications are started in Sailfish OS. Sailfish

application launcher creates a process called booster for each native application type

in the system startup phase. A new booster process is created when the native

application takes existing booster process in use. Booster processes are used by

Sailfish application launcher to reduce application startup delay. The booster process

exists for all native application types: qt5, silica-qt5 and generic. Figure 10 shows

application monitor console output of native application detection.

Figure 10. Native application startup detection

The application monitor resolves booster process identifiers and waits for the user to

launch an application. Finally application is detected and its real process name is

resolved as can be seen in Figure 10.

Application monitor uses a process trace system call to attach for each booster

process separately. Attach causes a stop signal for target process, which is in turn

arranged to stop at every system call enter and exit entry points. The application

monitor catches process state changes and looks from CPU registers whether the

system call is a request to change name of the calling thread. The application monitor

uses the process name set request as indication for application startup detection.

Application thread detection

Typically an application creates multiple threads during execution. Thread identifiers

are collected and used in log file filtering phase to identify Audit events having a

relation to the monitored application. In general, there are two types of application

threads to be detected; booster process threads that already exist at the time of the

application startup, and threads that are created during application execution.

Each booster process has threads that exist prior to actual application startup, those

are resolved using the proc file system that exposes system process information. In the

Linux-based environment, the proc file system contains a directory for each process.

Thread identifiers are available in the process-specific directory. The booster PID is a

process group leader, which is assigned for the started application. This information is

used to resolve TID belonging to the monitored application process. At application

runtime created threads are detected from the Audit log file by searching system call

events that have been triggered by a clone system call.

28

Socket monitoring

Socket connections are monitored to get information of both local and Internet domain

sockets activity during execution of monitored application. Socket monitoring is

implemented with two separated approaches; by polling the proc file system and

parsing socket information from the Audit log file. The socket information retrieved

from the proc file system provides Internet domain sockets and contains also

connections opened prior to the monitoring session. Collected sockets are system wide

and hence might be created also by background applications. Monitoring of the

Internet domain sockets are performed in a dedicated thread, which polls transmission

control protocol (TCP) and user datagram protocol (UDP) specific files for new

sockets. Each socket has an associated file system object, which is uniquely identified

by index node (inode) entry that refer to a file system object node. The polling thread

compares the proc file system sockets against the existing entries in the application

monitor’s socket list. In case of a new socket is found, it is appended to the socket list.

Socket address and port information is stored for local and remote addresses. As an

example, TCP sockets section of result report is presented in Figure 11.

Figure 11. TCP-socket entries in the result report

In the Audit log filtering option, socket address records are filtered out from the Audit

log and stored to a socket connection log file. A socket log entry contains address

family, process information and host address for Internet domain sockets.

Results report

The application monitor generates the result report for thread identifiers, sockets and

audit rule hits. Audit rule match section of the report contains filtered and unfiltered

rule match results. Figure 12 shows rule match report for sockets and system calls.

29

Figure 12. Report for sockets and system calls

Unfiltered result column shows all rule hits for the entire Audit log file, i.e. it does not

distinguish whether an audit event was generated by monitored application or a

background process. Filtered result column shows only rule match results, which PID

or parent PID field value match for the collected application thread identifiers. This is

one way to identify the log entries generated by the monitored application. Individual

Audit rule hit counts are not visible in the results. However, the count values can be

resolved using Audit event log filtering tools. The Audit rules are read from the rule

definition file and each identifier is added to the result report as well, this enables Audit

rule changes without recompiling the application monitor itself. Complete report of

application monitor can be found from appendix 1.

4.2. Network traffic monitor

The network traffic monitor plugin extensions can be used for analyzing HTTP and

HTTPS network traffic intercepted by mitmproxy. The mitmproxy is a man-in-the-

middle (MITM) proxy, capable of extracting encrypted application data from transport

layer security (TLS) and secure socket layer (SSL) connections [30]. The application

layer data is provided as a plaintext for the monitor plugin. The network traffic monitor

runs entirely on target device and performs data analysis in real-time. User defined

keywords are searched from multiple HTTP header fields and message body. Results

are stored in several files that contain secure connections, certificate details and

application layer data analysis results.

4.2.1. Mitmproxy

The mitmproxy supports multiple proxy operation modes. Suitable operation mode to

be used depends on configurability of a client and use case. A transparent proxy mode

is ideal option, when the client cannot be configured explicitly to use a HTTP proxy.

In the transparent proxy mode client configuration can be omitted, because traffic is

directed into a proxy at the network layer. Client is not aware of existence of the

transparent proxy. In network monitor setup proxy server and routing mechanism are

running on the same host, hence redirection is accomplished using iptables redirection

mechanism. The iptables is a packet filtering and network address translation (NAT)

30

capable tool in the Linux kernel. The transparent proxy needs to consult iptables in

order to resolve original destination address.

For secure connection interception mitmproxy works as certification authority (CA),

it contains a full CA implementation to generate interception certificates on the fly.

Secure connection handshake process is illustrated in Figure 13.

Figure 13. Mitmproxy SSL handshake message flow

1. Client establishes connection, which gets redirected to mitmproxy according

to iptable rules. Mitmproxy is configured to listed local host port on the same

host as client. Mitmproxy retrieves original destination utilizing routing

mechanism.

2. Client initiates SSL connection as it thoughts to be communicating with remote

server. Client sends server name request (SNI) to indicate host name it attempt

to connect.

3. Mitmproxy establish secure connection to remote server using SNI requested

by client.

4. Server responds with SSL certificate containing common name (CN) and

subject alternative name (SAN). These values are used to generate interception

certificate.

5. Mitmproxy generates interception certificate and continues handshake process.

6. Client starts to communicate over secure connection.

7. Mitmproxy passes client request to remote server using secure connection.

Client device needs to have proper certificate files installed for mitmproxy CA in order

to avoid browser warning for SSL connections.

31

4.2.2. Monitor plugin

The mitmproxy provides an event driven Python scripting application programming

interface (API) for plugin implementation. The scripting API can be used for

modification of HTTP messages at runtime, and for implementing additional network

traffic monitoring facilities. The scripting API provides hooks for several events such

as request, response and connection information. Monitor plugin architecture is

presented in Figure 14.

Figure 14. Mitmproxy monitor plugin architecture.

The network monitor plugin is automatically loaded at the startup phase of the

mitmproxy. The monitor plugin initialization contains a processing of a rule file and

opening files for both events log and server connections. Rules are defined as key-

value pairs, in a way that the key is a symbolic name for actual plaintext string to be

searched from intercepted traffic. The event log contains entries that describe rule

matches found during monitoring session. The match event contains entire request line

section of the HTTP request that match was detected for. In addition, event details

contain a timestamp, client and server address, scheme and match type. The match

type can be either plaintext or base64. An event containing a request line match is

presented in Figure 15.

32

Figure 15. Monitor plugin event for a request line match.

A standard HTTP request consists of a request-line, a collection of headers and a

body section. The request-line begins with a method, followed by uniform resource

identifier (URI) and protocol version. The method defines an operation to be

performed on the resource identified by URI. The header fields are used for passing

additional information about the request to the server. The message body section is an

optional part, when it is available it is used to carry entity-body associated with the

request. The monitor plugin hooks to mitmproxy’s client request and server response

events. Actual data inspection for supported HTTP request’s fields are performed on

a client request handler. Details of upstream certificate are resolved on a server

response handler.

The request-line inspection is performed to make sure that a query string does not

contain user sensitive data. Content of entire request-line is converted to lowercase

and then compared against plaintext keywords defined in the rule file. The request-line

is also split in key-value pairs to perform both a base64 decoding and a plaintext

comparison. The base64 is encoding scheme used to represent binary data in an ASCII

format.

The HTTP request may contain a cookie header field. The cookie is a small piece

of data stored in a user’s web browser. Cookies are sent from the websites and stored

in a user’s browser. The browser sends the cookie back to the server when the webpage

is revisited. The cookies provide a mechanism for a website to remember user’s

previous activity. The type of cookie can be either session or persistent. The session

cookie is temporary and is removed when the web browser is closed. The persistent

cookies remain in the web browser over sessions and are removed until they expire.

The cookie consists of key-value pairs and can potentially store sensitive information.

The network monitor plugin performs parsing for the cookies on client request handler.

Content of the cookie is inspected the same way as the other request fields mentioned

above.

The body section is used commonly with a put request to deliver data from the client

to the server. The put request has an associated header specifying a type of the content

that is ignored on the content parsing. The body section of the put request is inspected

on the same way as the request-line. The purpose of the server response handler is to

extract information of secure connection upstream certificate and store it to server

connections log file. Format of extracted certificate information is shown in Figure 16.

33

Figure 16. Extracted certificate information

Server connection log contains client and server connections addresses, and details of

upstream certificate such as organization (‘O’) and common name (‘CN’).

34

5. TEST CASES

The goal of test cases is to produce information to perform behavior and security

assessment for application under testing. Test cases try to provide an answer for

questions: “what system interfaces and resources are utilized by the application and

does the application expose user sensitive data using Internet connectivity?”

5.1. Target environment

Test cases are executed in Jolla smartphone, which runs on top of open source Sailfish

OS. The Jolla was selected as a target environment due to its openness and that it

represents minority on mobile market. Additionally such an open system allows

changing of kernel level configurations and extensive usage of instrumentation tools.

Sailfish is a Linux-based mobile OS combining Jolla’s user interface and middleware,

Mer core and kernel hardware adaptation. In addition for native Qt5 applications

Sailfish OS supports Android application through third-party libraries [29]. Figure 17

presents Sailfish operating system components.

Figure 17. Sailfish OS architecture.

35

Native applications in Jolla are built using Qt5 Sailfish silica components [29].

Native applications runs with privileged user permissions to access user sensitive data

storage of Sailfish OS, such as contacts, calendar, messages, gallery etc. Native

applications run as user identifier (UID) “nemo” and group identifier (GID) is set to

“privileged”.

Android applications are supported by the Sailfish OS via third-party provided

Alien-Dalvik virtual machine. Android applications do have different security policy

compared to the native applications, because they do not have permission to access for

privileged data storage and application permissions are requested in the installation

phase. Installation procedure follows general Android application installation, where

user needs to confirm application permission requests to proceed in installation. In the

installation Android applications get assigned exactly same UID and GID values,

which are set for certain application every time it starts. In addition all Android apps

are assigned to process control group created by Alien-dalvik, which process group

identifier is same as Alien-dalvik process identifier (PID).

Mer core is openly developed set of services and utilities between user interface and

kernel. Its intention is to provide mobile-optimized core distribution for device

manufacturers using Qt and HTML5 technologies. Mer core is maintained by Mer

project and it is used in several different projects including Jolla. [30]

Sailfish kernel is Android fork of standard Linux kernel; it supports Android specific

additions such as binder IPC mechanism, wakelocks, ouf of memory killer and

Android shared memory. Jolla has implemented hardware adaptation for kernel to

support HW configuration.

5.2. Application monitor testing

Application monitor is able to generate a report of Audit events for file system access

and system calls used by monitored application. Event log output of the monitoring

session is used for identifying system resource usage and outbound socket connections.

In general, file system path rules are useful to track access for certain paths storing

user sensitive data. The system call events provide detailed information about system

activities and can be used to determine monitored application relationship to other

system resources and services.

5.2.1. Environment preparation

Running the application monitor and Audit framework in the Sailfish OS based mobile

device requires kernel level system configuration and user space component

installation for target device. Jolla device used in testing was equipped with

Tahkalampi software release, which is equal for version 1.0.8.21 of Sailfish OS. This

chapter introduces how Jolla device was configured in order to perform tests using

application monitor.

Linux kernel configuration requires several options to be enabled for a target device

specific configuration file to take advantage of Audit framework. End-user version of

Jolla kernel configuration does not enable all options required for Audit framework.

In addition for existing Audit framework related kernel configurations, relay and Audit

system call support were enabled. Audit system call configuration enables Linux

kernel low-overhead system call auditing infrastructure, which enables Audit

36

framework to trace system calls. Relay support enables efficient mechanism to transfer

large amount of data from kernel to the user space. Audit framework uses relay

interface to deliver events for audit user space dispatcher component.

Kernel configuration changes require compilation of the kernel and updating of

corresponding flash image to the Jolla device. Kernel compilation produces a zImage,

which is to be packed with a ramdisk to form a boot image. The ramdisk image

contains initial root file system, which is loaded as part of kernel boot. The ramdisk

changes were not needed, thus it was extracted out of the device’s boot image and then

repacked to with compiled zImage. A new boot image also involved adjustment of

image file offsets, because the compiled zImage was a bit larger than the original one

due to added configurations. In order to update the new boot image for Jolla device, it

was required to perform bootloader unlock operation to allow operating system to boot

from a custom boot image. Audit user space components were compiled from source

and installed to the Jolla device.

5.2.2. Audit rule configuration

Audit rule configuration plays a significant role in application monitoring, because the

accuracy of rules define usefulness of the event log. User sensitive data access attempts

are one of the most interesting things to look for in application monitoring. Jolla device

stores application and user sensitive data to the file system paths accessible by nemo

and privileged user groups. A privileged storage contains user sensitive data such as

contacts, images, calendar, notifications, social media and positioning information.

The privileged path is accessible only for certain native applications belonging to

privileged user group. Applications running with privileged permission can access all

file system paths restricted for privileged group. These file system paths are added to

the Audit rules to generate separated event for each watched file system path. File

system watch rules for application data storage are presented in Table 2.

Table 2. Watch rules for application data storage

Path - /home/nemo/.local Access Key

/share/jolla-email rwa email

/share/commhistory rwa commhistory

/share/system/privileged/Contacts rwa privileged_contacts

/share/system/privileged/Images rwa privileged_gallery

/share/system/privileged/Calendar rwa privileged_calendar

/share/system/privileged/Notifications rwa privileged_notification

/share/system/privileged/Posts rwa privileged_posts

/share/system/privileged/Sync rwa privileged_sync

/share/system/privileged/qtposition-geoclue rwa privileged_position

/share/system/privileged rwa privileged_other

/share rwa nemo

A permission parameter for file system rules specifies, which type of access triggers

an event. All monitoring session rules are defined to generate event for file read, write

37

and attribute change. A key parameter is useful for report and post processing utilities

to classify events. The last rule in the Table 2 collects all application data storage

events, which are not matching for the preceding rules.

To track system resource usage, some of the system devices can be directly watched

with file system rules. These devices are opened when the application starts to use

them and closed at the time of the application termination. For example multimedia

system devices, such as camera and audio can be watched with file system rules. Rules

for camera and audio device access are presented in Table 3.

Table 3. Watch rules for multimedia devices

Path Access Key

/dev/v4l-subdev8 rw back_camera

/dev/v4l-subdev9 rw front_camera

/dev/snd rw capture_playback

Multimedia devices that handle user sensitive data are audio recording and camera.

For instance, malware application might try to record phone call or use camera and

later on upload recorded files for remote server. The most of hardware devices are

already opened by system services at device startup phase and functionalities are

provided for upper layers through specific services, hence watching that kind of device

nodes directly do not generate Audit events.

To detect trivial system compromise attempts, file watch points are added for

shadow, passwd and group files that hold encrypted users’ passwords, system account

information and user groups respectively. Audit watch rules for account monitoring

are presented in Table 4.

Table 4. Watch rules for account monitoring

Path Access Key

/etc/shadow wa Shadow

/etc/passwd wa Passwd

/etc/group wa Group

In case of a malicious application manage to gain root access to a device or some other

way manage to exploit system, it most probably attempts to deliver collected data to a

remote server to take advantage of it. Data needs to be delivered by using one of the

Internet connectivity options of the device. In order to detect a usage of connectivity

interfaces, system calls are monitored for sockets and selected inter-process

communication mechanisms. Audit system call monitoring rules are presented in

Table 5.

38

Table 5. System call rules

System call Options Key

connect path=user_bus_socket dbus_user

connect path=system_bus_socket dbus_system

connect success=1 connect

clone success=1 clone

socket success=1 socket_other

socket success=1, a0=af_local socket_local

socket success=1, a0=af_inet socket_inet

socket success=1, a0=af_inet6 socket_inet6

socket success=1, a0=af_netlink socket_netlink

socketpair success=1 socketpair

pipe success=1 pipe

shmat, shmdt, shmget success=1 shared_mem

recvmsg, recv, recvfrom success=1 recvmsg

sendmsg, send, sendto success=1 sendmsg

ioctl success=1 ioctl

Data exchange activity between processes within the same host is monitored using IPC

related system call watch points. Linux-based operating system provides various

facilities for IPC, such as D-Bus, local sockets, message queues, shared memory and

pipes. The D-Bus provides two separated buses for communication, which are watched

using connect system call rule. D-Bus watch rules contain an option to specify a file

system path for user and system bus sockets. The usage of message queues are

monitored using recvmsg and sendmsg system calls and their variations. A watch point

for socket system call logs an event for each successful socket creation. Event data

contains socket details in its data fields, which are used for distinguishing local and

Internet domain sockets. Intention of other socket related system call watch points are

to provide additional information for socket connection in question. Monitoring of

hardware device control is done using an ioctl system call, which exposes controlled

device and request details.

5.2.3. Test sessions

Tests were performed for pre-installed applications and applications available from

Jolla application store. In addition, applications were tested from openrepos, which is

a distribution channel for applications that do not pass a validation process of official

application store, or development of an application is still in progress. Test focus was

set for native applications since some of the application monitor features rely on

Sailfish OS. Various applications were selected from different categories. Goal was to

select applications that would use as many system functionalities as possible.

Tests were run for one application at the time and avoiding use of other applications,

which could cause unnecessary events for monitoring session output. Tested

applications were operated normal way by trying to cover all functionalities available.

With a full set of defined Audit system call rules, test session duration was kept

39

relatively short in order to avoid exhausting output log. Tested applications and Audit

rule match results are presented in table Table 6.

Table 6. Application monitor test results

 Devices
File

system
Sockets and IPC Test summary

 b
ac

k_
ca

m
er

a

 f
ro

n
t_

ca
m

er
a

 s
o

u
n

d
_c

ap
_p

la
yb

ac
k

 c
o

m
m

h
is

to
ry

 e
m

ai
l

 p
ri

vi
le

ge
d

 s
o

ck
et

_
in

et
, i

n
et

6

 s
o

ck
et

_
lo

ca
l

 s
o

ck
et

_n
et

lin
k

 d
b

u
s_

u
se

r,
 s

ys
te

m

 r
ec

vm
sg

, s
en

d
m

sg

 s
h

ar
ed

_
m

e
m

 p
ip

e

 F
ilt

er
ed

 t
h

re
ad

s

 A
u

d
it

 e
ve

n
ts

 D
u

ra
ti

o
n

Application

jolla-calendar x x x x x 11 4272 1:05

jolla-camera x x x x x x x x 110 11900 1:14

jolla-contacts x x x x x x x x 12 7459 1:41

jolla-email x x x x x x x x x 27 9302 1:40

sailfish-maps x x x x x x x 22 6033 1:20

sailfish-browser x x x x x x 41 5601 0:36

Harbor-meecast x x x x x 14 6275 1:10

Harbor-friends x x x x x 25 15365 2:03

Harbor-recorder x x x x 17 35010 0:55

Audit rules in the result table columns are named according to real rule identifiers,

with an exception that multiple results are combined for a single result column for

privileged files, inet sockets, dbus and message queue. The results do not contain all

Audit rules being active during testing, because those were used to provide additional

data for analysis of the other events. Applications are named exactly how those are

identified in the device. Application names preceded with “Harbor” denotes that

certain application is from sailfish store or openrepos. Browser and maps application

are third-party provided applications. Results are taken from unfiltered Audit log file

to avoid dropping out important events. The details section denotes number of

application threads detected and Audit events collected during the test session.

Duration is total time, which tracing was active.

5.2.4. Results analysis

Based on the results summary of the application monitor, there was no suspicious

applications found. However, it required a deeper investigation for Audit event output

to get better visibility of IPC mechanisms and Internet domain sockets usage. Sailfish-

maps was selected to be an application for further analysis.

According to the result report, the sailfish-maps application did a file system access

for the privileged storage and utilized several IPC mechanisms. Audit event filtering

for file system access events exposed multiple events for the privileged storage.

Accessed path contained a database for location services and nemo-user accessible

geoclue service storage. This was analyzed to be a normal operation of the sailfish-

maps application.

40

System call events were used to identify application process causing triggering of

an event. The most of the system call argument fields were not usable on analysis due

to memory reference type of argument. One exception being a connect system call

event that exposes address to be connected in human readable format. Analysis for IPC

and internet domain sockets usage needed collecting of individual rule match counts

at the first place. Rule match counts are presented in Table 7.

Table 7. Sailfish-maps Audit events

Rule name Number of hits

recvmsg 3886

sendmsg 1859

socket_inet 75

socket_local 30

socket_other 9

socket_netlink 8

dbus_user 8

dbus_system 7

pipe 5

Relatively high number of message queue send and receive events were generated by

various processes in the system, those include the sailfish-maps related processes. D-

Bus session and system bus events were triggered by the sailfish-maps application and

the geoclue providing D-Bus based location information services. Pipe events were

also generated by the geoclue services.

Local socket events were produced by system daemon logging facilities, Android

system logging and property service usage, wayland window manager and virtual

keyboard connection. Internet domain sockets were connections for servers providing

map data, those were opened multiple times for the same IP-address and different

servers as well, which explains relatively high number of connections. Netlink socket

events were raw type sockets, which were created by sailfish-maps application or one

of its parent processes. In addition, Audit framework used a netlink socket to control

its kernel component, those events were simply discarded. Sockets falling to the

“socket_other” rule were created by the geoclue service.

5.3. Network monitor testing

In order to analyze HTTP and HTTPS network traffic entirely in the Jolla device, the

mitmproxy with a network monitor plugin was installed to the device. All network

traffic to be analyzed were routed through localhost port, which the mitmproxy was

listening. This was accomplished by using iptables. In addition, a mitmproxy

interception certificate was installed to the device to avoid the Internet browser

warnings about untrusted secure connections.

Iptables output chain rules were defined to route standard HTTP and HTTPS ports

to a loopback interface port 8080 that is the listening port of the mitmproxy. The output

chain rules use destination network address translation (DNAT) target to rewrite

41

address of matching IP packets. Mitmproxy was configured to run as dedicated user

called mitm. This was done to avoid iptables to route packets originated from the

mitmproxy again to the loopback interface. Without an owner option packets would

be routed in an infinite loop to the loopback interface. Iptables rule setup is presented

in Figure 18.

Figure 18. Iptable rules for mitmproxy

Several plaintext keywords were added to network monitor’s rule input file to track

phone identification numbers, personal information, location and account details.

These keyword rules were automatically compared to application layer network traffic,

which was routed through the mitmproxy. List of the keyword rules are presented in

Table 8.

Table 8. Network monitor plaintext rules.

Key Value

first_name harri

last_name luhtala

app1_pw 0765

uname_1 username

uname_2 harriluh

email gmail

imei 359745050103180

phone_num 4877130

bt_address 5056a8002728

gps_lat 65.0

gps_long 25.

Several test cases were run to prove functionality of the network monitor plugin. Goal

of simple test cases were to generate data in various forms, which should trigger

defined rules. Test data was generated mainly with a native browser of the Jolla

smartphone. As the network monitor is capable to inspect several HTTP request fields

in a plaintext and a base64 format, all of those options were covered in the simple test

cases. In addition, tests were run for real applications, which were observed to be using

HTTP or HTTPS application layer protocol for communication.

The mitmproxy was started in a mitmdump mode with a transparent proxy option

enabled. These startup parameters did not enable interactive shell for flow examination

and neither retain HTTP flows in a memory for runtime manipulation. Instead, the

mitmdump mode just prints client connections and monitoring plugin output to

console.

42

Request line tests

Test data was generated with the Sailfish native browser by entering HTTP get

requests. The request line contained matching string identifiers for the monitoring

plugin keywords. The request line parameters were entered in plaintext and base64

encoded format. Additionally single request line content was also mixed with plaintext

and base64 encoded values. The network monitor plugin writes runtime analysis

results for the match log file. Test cases and results are presented in Table 9.

Table 9. Test result for HTTP request line

Request line Key type scheme section

GET http://www.kaleva.fi/harriluh/ uname_2 plaintext http
request

line

GET http://www.kaleva.fi/?data=
MzU5NzQ1MDUwMTAzMTgw

imei base64 http
request

line

GET http://www.google.fi/
?q=4877130&x=MDc2NQ==

phone_num,
app1_pw

plaintext,
base64

http
request

line

The request line column presents HTTP requests used in the test cases. Domain names

used in the requests are just for giving a clue how parameters might be delivered within

the request line. Subsequent columns are test result provided by monitoring plugin.

Tests cases did prove that the network monitor plugin is capable of identifying

plaintext and base64 formatted strings within the HTTP request line.

Tests for encrypted content

Monitor plugin was tested with PUT requests that involve sending of an encrypted

content section. This was accomplished by using the native browser and entering input

data for secure websites. Identifier strings were entered in website’s forms and then

request was submitted. All network traffic for standard HTTPS port was routed

through the mitmproxy as explained in environment preparation section. Test results

for encrypted content are presented in Table 10.

Table 10. Test results for encrypted content

Request type, input form data key type scheme section

PUT,
username: harriluh
password: 0504877130

uname_2,
phone_num

plaintext,
plaintext

https content

PUT,
username: 359745050103180
password: MDUwNDg3NzEzMA==

imei,
phone_num

plaintext,
base64

https content

Input data was entered on username and password fields as shown in above table.

Network monitor plugin was able to successfully detect plaintext and base64 decoded

content from the submitted requests.

43

Tests for cookies

Web browsers commonly use cookies for storing state information, which is delivered

back to server for subsequent connections for the same web site. Cookie content

inspection was tested using cookie testing web page that allowed user to define content

of the cookie. Network monitor match log entry for cookie testing is presented in

Figure 19. Match log entry for cookies.

Figure 19. Match log entry for cookies

The match log entry contains two rule matches in a single get request. Plaintext and

base64 encoded fields were detected for cookie section of the request.

Real applications

Real application testing was performed in a way that the phone would be used in a

daily usage. This involves using various applications and installing new ones from

application stores, using browser, messaging services and social media. The network

monitor was enabled on background to expose suspicious activity for outbound HTTP

and HTTPS ports. Identifier keywords were exactly same as in the simple test cases,

which will obviously generate false positives for match log in normal use. This means

that the match log file needs to be investigated manually after test session to identify

false positives. Network monitor tests result for real application are presented in Table

11.

Table 11. Rule match results for applications.

Application – version Key type Scheme

Vopium instant
messenger – 3.4

phone_num,
imei

plaintext,
base64

https

Sailfish maps – 1.0.3 gps_lat, gps_long plaintext http

Apptoide appstore –
5.2.0.2

gps_lat,
gps_long,

imei
plaintext http

44

Several instant messenger application were installed to the device as personal

information related security issues have been reported for this application category in

the past. Vopium instant messenger application exposes user’s phone number and

International Mobile Identity (IMEI) code for remote server. This information was

delivered using secure connection and the IMEI code was base64 encoded within the

request’s content section. Phone number is used as a user name in the Vopium

application. One reason to deliver IMEI could be intention to prevent multiple logins

with the same user name. The network monitor was not able to detect other suspicious

communication events based on defined keywords for instant messenger applications.

Some of the tested applications did stop working due to failing MITM proxy certificate

interception. The interception of the MITM proxy might be failing, because a

certificate pinning prevents interception process. The certificate pinning means that an

application contains hard-coded information of the certificates to be used by the server,

thus the application trusts to certificates signed by a small set of certificate authorities.

In addition, many of the instant messengers were using different application layer

protocol such as extensible messaging and presence protocol (XMPP).

Device location information was exposed in a form of global positioning system

(GPS) coordinates by two applications. Sailfish maps was delivering coordinates using

HTTP get request. This was harmless activity because location information was used

for requesting map data for certain location. Apptoide application store delivered a

location information and IMEI code for a remote server. This activity happened when

application installation was started in the Apptoide store. Additionally unsecure HTTP

connection was used to transfer sensitive information to the remote server.

45

6. DISCUSSION

The main challenges in thorough mobile application instrumentation are to identify

limitations caused by target system and to select a suitable instrumentation tool. It

might be cumbersome to understand what are the kernel level configurations required

by instrumentation tools. In the most cases, mobile device’s limited and performance

optimized configuration cause obstacles for instrumentation frameworks. This

obviously leads relatively big efforts due to need for cross-compilation environment

setup and kernel rebuild with required options. Additionally device manufacturer

might have implemented security features on the device in order to prevent

unauthorized updates of the kernel. The mentioned limitations give an overview what

kind of problems might be faced in mobile device environment, before actual

instrumentation is even started.

 Instrumentation frameworks produce system wide events, which of course can be

limited by defining a monitoring rule associated with an application process identifier.

However, the application process identifier does not exist before the application is

started, and typically multiple threads are created during execution. To limit amount

of instrumentation events, understanding of the monitored system is required in order

to properly configure selected instrumentation framework. In general, too widely

defined instrumentation rules might overload resource-constrained system when CPU

intensive application is monitored. For example, this issue happens when system call

interface is monitored and there are no restrictive parameters defined for the event

generation.

The Audit framework was selected as an underlying instrumentation tool for

application monitor extension. The Audit turned out to be a capable tool to monitor

privileged storage and system calls with flexible configuration options, thus it was a

good choice for detecting malicious applications that would act against their expected

behavior. Additionally, Audit was configured to observe an access to the privileged

storage, system devices and network resources. However the Audit does not provide a

way to monitor explicitly a single application. It was soon realized that events

produced with the Audit would need some sort of processing to get understanding of

application’s resource usage. The application process and thread identifiers are the

information in Audit events to distinguish them to monitored application. However,

these identifiers could not be resolved after closing the monitored application. These

issues led to a decision to develop a native application process detection mechanism

that is run prior to the Audit framework. The application startup and dispose detection

mechanism automatically controls the Audit framework to limit event generation for

the time period application being active. In addition, filtering of Audit events were

implemented based on collected process and thread identifiers to distinguish

monitored application events.

The goal was to utilize existing instrumentation tools and extend functionalities to

provide an automatic way to observe suspicious applications. The developed extension

and Audit framework were successfully used for application resource usage

monitoring. For instance, the application monitor was able to identify privileged

storage usage and an access to sensitive device resources such as audio recording or

camera. Monitored application’s usage of Internet domain sockets were also identified.

In general, the application monitor was able to produce a report that can be used for

application resource usage assessment. A problematic situation happens when an

application does an access to a resource through inter-process communication. In this

46

case, application access is tracked for IPC mechanism usage, not for the actual

resource. The resource access is marked to a background process although it is initiated

by monitored application.

As the application monitor provides an overview of used system resources without

providing any analysis results for data content, network monitor was developed to

search keywords from the outbound HTTP and HTTPS traffic. The keyword

definitions passed to the monitor as input parameters resulted several findings for

encrypted and encoded content as well. Problems were generated by several

applications, because protection mechanism against SSL connection interception was

obviously implemented using certificate pinning. The network monitor functionalities

could be easily further developed by adding more clever content analysis functionality

within limits of target system performance. The content analysis functionalities

developed in scope of this thesis were plaintext and base64. The network monitor or

equivalent setup could be considered as potential background process on the mobile

device. In a real usage, network traffic routing through the transparent proxy should

be dedicated for the subset of applications at the time, and number of keywords should

be limited. Additionally keywords contain exactly the same sensitive information that

would interest an attacker. Thus, secure execution and storage environment should be

taken in use for that sort of monitoring application.

Related research papers have been published that discuss monitoring of applications

and tracking of sensitive data on mobile devices. The prior research uses mainly

dynamic taint analysis approach to malware detection and analysis. A good example

of this is TaintDroid for Android [32]. Although the TaintDroid monitoring approach

differs from the solution presented in this thesis, it has somewhat the same goals. The

TaintDroid tracks sensitive information flows in the system. The tracking takes place

by automatically labeling sources of sensitive data and observing how labeled data

propagates in the system. The taint analysis provides more accurate results for the

sensitive information tracking compared to the approach presented in this thesis. The

main advantage of TaintDroid is that information flows between applications are

identified and modified sensitive information can be detected.

47

7. CONCLUSION

This thesis presented a resource usage monitor and a keyword-based network traffic

content monitoring for mobile device environment. General purpose system

instrumentation tools were extended by developing additional features that enable

behavior assessment of monitored application. Test cases were performed to prove

functionality of developed extensions and to monitor native applications of Jolla

smartphone. The test cases focused to discover malicious behavior and sensitive

information leakage.

 The resource usage monitor for native applications did not produce finding related

to unexpected system resource usage, however the selected method was proven to be

suitable for monitoring applications in a resource-constrained mobile device. The

network traffic content monitoring produced multiple matches that can be interpreted

as personal information. Although network traffic content analysis were performed

only for limited number of application layer protocols and subset of their content and

encoding schemes, it produced promising results. To further develop network content

monitoring, it could be improved by supporting several encoding schemes and multiple

application layer protocols. Another important consideration would be a mechanism

to focus the network content monitoring on a single application, which enables

activation of extended content analysis in a resource-constrained system.

48

8. REFERENCES

[1] Mobile planet smartphone research. (accessed 24.1.2015), Google inc. URL:

http://think.withgoogle.com/mobileplanet/en/.

[2] Mobile threat report Q1 2014. (accessed 24.1.2015), F-secure. URL:

https://www.fsecure.com/documents/996508/1030743/Mobile_Threat_Report_

Q1_2014_print.pdf.

[3] Asokan N., Davi L., Dmitrienko, A. (2013) Synthesis lectures on information

security, privacy, and trust: mobile platform security. Morgan & Claypool

publishers, CA, USA, 110 p.

[4] Kleidermacher D., Kleidermacher M. (2012) Embedded systems security:

practical methods for safe and secure software and systems development.

Elsevier, Amsterdam, 1st ed., 416 p.

[5] Becher M. (2011) Mobile security catching up? Revealing the nuts and bolts of

the security of mobile devices. In: IEEE symposium on security and privacy,

May 22 – 25, Berkeley, CA, United States.

[6] Android system permissions. (accessed 12.4.2015). URL:

http://developer.android.com/guide/topics/security/permissions.html.

[7] Whitman M. & Mattord H. (2011) Principles of information security. Course

Technology Press, Boston, MA, United States, 4th ed., 617 p.

[8] Vidas T., Vopitka D. & Christin N. (2011) All your droid are belong to us: A

survey of current android attacks. In: 20th USENIX Security Symposium,

August 8 – 12, San Francisco, CA, United States.

[9] OWASP mobile security project. (accessed 12.4.2015). URL:

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project.

[10] Desnoyers M. & Dagenais M. (2006) Tracing for hardware, driver and binary

reverse engineering in Linux. In: Recon conference, June 16 – 18, Montreal,

Canada.

[11] Kerrisk M. (2010) The Linux programming interface, a Linux and UNIX

system programming handbook. No Starch Press, San Francisco, CA, United

States, 1st ed., 1506 p.

[12] Wright C., Cowan C., Smalley S., Morris J. & Kroah-Hartman G. (2002) Linux

Security Module Framework. In: Linux Symposium, June 26 – 29, Ottawa,

Canada, Vol. 1, s. 604 – 617.

[13] Another LSM stacking approach. (accessed 12.4.2015). URL:

http://lwn.net/Articles/518345/.

49

[14] Haines R. (2014), The SELinux notebook. URL:

http://freecomputerbooks.com/books/The_SELinux_Notebook-

4th_Edition.pdf.

[15] Security-enhanced Linux in Android. (accessed 12.4.2015). URL:

https://source.android.com/devices/tech/security/selinux/index.html.

[16] ARM ltd. (2009) Building a secure system using TrustZone technology. URL:

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-

009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[17] Mijat R. & Nightingale A. (2011) ARM white paper: virtualization is coming

to a platform near you. URL: http://www.arm.com/files/pdf/system-mmu-

whitepaper-v8.0.pdf.

[18] Laurenzano M., Tikir M., Carrington L. & Snavely A. (2010) PEBIL: Efficient

static binary instrumentation for Linux. In: IEEE international symposium,

March 28 – 30, White Plain, NY, United States.

[19] Hazelwood K. & Klauser A. (2006) A dynamic binary instrumentation engine

for the ARM architecture. CASES '06: proceedings of the 2006 international

conference on compilers, architecture and synthesis for embedded systems.

ACM, New York, NY, United States, pp. 261-270.

[20] Kernel probes (Kprobes), (accessed 12.4.2015). URL:

https://www.kernel.org/doc/Documentation/kprobes.txt.

[21] Goswami, S., (accessed 3.11.2014), An introduction to KProbes. URL:

http://lwn.net/Articles/132196/.

[22] Barnes Q. (2007) Kernel Probes for ARM. In: the embedded Linux conference,

April 17 – 19, San Jose, California, United States.

[23] Ftrace - function tracer. (accessed 3.11.2014). URL:

https://www.kernel.org/doc/Documentation/trace/ftrace.txt.

[24] Eigler F. (2014) Systemtap tutorial. URL:

https://sourceware.org/systemtap/tutorial.pdf.

[25] The LTTng Documentation. (accessed 12.4.2015). URL: http://lttng.org/docs/.

[26] The ktap Tutorial. (accessed 12.4.2015). URL:

http://www.ktap.org/doc/tutorial.html.

50

[27] System auditing. (accessed 3.11.2014). URL:

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/chap-

system_auditing.html.

[28] Linux audit quick start. (accessed 12.4.2015). URL:

https://www.suse.com/documentation/sles11/singlehtml/audit_quickstart/audit_

quickstart.html.

[29] All about us and the OS. (accessed 12.4.2015). URL:

https://sailfishos.org/about/.

[30] Mer. (accessed 20.11.2014). URL: http://merproject.org.

[31] Mitmproxy. (accessed 12.4.2015). URL:

https://mitmproxy.org/doc/mitmproxy.html.

[32] Enck W. (2010) TaintDroid: an information-flow tracking system for realtime

privacy monitoring on smartphones. In: USENIX symposium on operating

systems design and implementation, October 4 – 6, Vancouver, Canada.

Appendix 1. Example output of the application monitor.

	ABSTRACT
	TIIVISTELMÄ
	TABLE OF CONTENTS
	FOREWORD
	ABBREVIATIONS
	1. introduction
	2. MOBILE SYSTEM SECURITY
	2.1. Information security
	2.2. Threats and attack vectors
	2.3. Platform security
	2.4. Access control and enhancements
	2.5. Hardware enforced security

	3. SOFTWARE INSTRUMENTATION
	3.1. Instrumentation methods
	3.2. Tools
	3.2.1. Kprobes
	3.2.2. Ftrace
	3.2.3. Systemtap
	3.2.4. LTTng
	3.2.5. Ktap
	3.2.6. Audit
	3.2.7. Summary

	4. INSTRUMENTATION MODULES
	4.1. Application monitor
	4.2. Network traffic monitor
	4.2.1. Mitmproxy
	4.2.2. Monitor plugin

	5. TEST CASES
	5.1. Target environment
	5.2. Application monitor testing
	5.2.1. Environment preparation
	5.2.2. Audit rule configuration
	5.2.3. Test sessions
	5.2.4. Results analysis

	5.3. Network monitor testing

	6. DISCUSSION
	7. cONCLUSION
	8. REFERENCES

