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ABSTRACT 

Sensitive information are extensively stored and handled in users’ mobile devices 

that sets challenges in terms of information security. One of the main targets of 

malicious mobile applications is to steal sensitive information. Mobile devices 

need tools and mechanisms to provide visibility how applications access sensitive 

system resources and handle information. Security assessment for a randomly 

selected application in a resource-constrained mobile environment requires an 

overall understanding of the target system and might involve a significant amount 

of work for selecting a suitable monitoring method. 

This thesis presents two extensions on top of general purpose instrumentation 

tools. The instrumentation tools and developed extensions are executed on a 

Linux-based mobile device in order to monitor the behavior of applications. An 

application monitor extension is used for providing an overview of system 

resource usage by monitored application. Network monitor extension is used for 

analyzing content of the network traffic in real-time for selected application layer 

protocols. Additionally application layer data is monitored from intercepted 

secure connections based on user defined keywords. Developed instrumentation 

extensions were successfully used in a Linux-based mobile device to monitor 

applications’ resource access and sensitive information from outbound network 

traffic. The approach selected for real-time network traffic analysis provided 

promising results while not causing significant performance problems for the 

mobile device. 

 

Key words: application instrumentation, system monitoring, security assessment.  
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TIIVISTELMÄ 

Arkaluontoista tietoa käsitellään ja tallennetaan laajamittaisesti käyttäjien 

mobiililaitteissa, mikä asettaa haasteita tietoturvallisuudelle. Yksi tärkeimmistä 

vahingollisten ohjelmistojen tavoitteista on varastaa luottamuksellista 

informaatiota. Mobiililaitteet tarvitsevat työkaluja ja mekanismeja tarjoamaan 

näkyvyyttä miten ohjelmistot käsittelevät informaatiota ja arkaluontoisia 

järjestelmän resursseja. Sattumanvaraisesti valitun sovelluksen tietoturva-

arviointi resurssirajoittuneessa mobiililaitteessa vaatii järjestelmän 

kokonaisvaltaista ymmärtämistä ja voi sisältää huomattavan määrän työtä 

soveltuvan monitorointimenetelmän valitsemiseksi. 

Tässä diplomityössä esitetään kaksi laajennusta yleiskäyttöisiin 

instrumentointityökaluihin. Instrumentointityökalut ja laajennukset suoritetaan 

Linux-pohjaisessa mobiililaitteessa sovellusten käyttäytymisen tarkkailemiseksi. 

Application monitor -nimistä laajennusta käytetään tuottamaan yleisnäkymä 

tarkkaillun sovelluksen järjestelmäresurssien käytöstä. Network monitor -

nimistä laajennusta käytetään reaaliaikaisesti analysoimaan 

tietoverkkoliikenteen sisältöä sovelluskerroksen protokollille. Lisäksi suojattujen 

yhteyksien sovelluskerroksen dataliikennettä tarkkaillaan määritettyjen 

avainsanojen perusteella. Kehitettyjä instrumentointilaajennuksia käytettiin 

onnistuneesti Linux-pohjaisessa mobiililaitteessa tarkkailemaan sovellusten 

järjestelmäresurssien käyttöä ja luottamuksellista tietoa ulosmenevästä 

dataliikenteestä. Valittu lähestymistapa reaaliaikaisen dataliikenteen 

tarkkailemiseksi tuotti lupaavia tuloksia vaikuttamatta merkittävästi 

mobiililaitteen suorituskykyyn. 

 

Avainsanat: sovelluksen instrumentointi, järjestelmän monitorointi, tietoturva-

arviointi 
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1. INTRODUCTION 
 

Mobile devices are available on the market from entry-level devices without Internet 

connectivity to high-end devices with relatively huge amount of features and 

computing power. For example in mobile handset category, devices classified as 

smartphones, have overtaken lead position from entry-level cell phones in many 

countries [1]. According to the first quarter of 2014 mobile threat report by F-Secure 

labs, mobile malware continues to focus on the Android devices. Especially third-party 

application stores provide high number of malicious applications [2]. The majority of 

malicious mobile applications are intended to steal user’s personal information and 

have financial targets [3]. Consequently, the security and privacy community and the 

industry have an increased interest to focus on mobile devices’ security issues. 

Early mobile devices used to be closed systems, where functionality was not 

possible to be extended by installing third-party applications and the only Internet 

connectivity option was a trusted cellular network [3]. The security aspect of mobile 

devices were totally different what it is nowadays. Rich feature set and multiple 

connectivity options of the recent mobile devices have added challenges in terms of 

information security. In addition, mobile devices store great amount of personal and 

company confidential information including emails, passwords and location. 

Mobile device ecosystem consists of several stakeholders, who have a different 

interest for device security. For example device user wants personal information to be 

stored safely and device manufacturer prevents tampering of the device so that any 

hardware parameters cannot be changed. Operators protect their business model by 

offering subsidized devices and application developers are interested in protecting 

source code of the application and mobile platform providers protect against malicious 

application installations. [3] 

Security vulnerability infection mechanisms are moving very quickly from desktop 

computers to mobile devices. Mobile devices providing security-critical functions and 

lacking proper security implementation altogether makes them vulnerable for security 

threats. Mobile devices need to provide software and hardware based device security 

mechanisms. Hardware based mechanisms are created in order to prevent simple 

device tampering attempts. Software based mechanism protect against external threats. 

The most crucial software based protection is process isolation, usually called 

sandboxing, which isolates each application into a private execution and storage 

environment. [3, 4] 

Linux-based mobile devices implement applications access control restrictions 

using different approaches. One platform might count solely to the traditional style 

permissions for all third-party applications, while other platforms have dedicated user 

identifier assigned per application. Per application user identifier approach enable 

specific access control definition for each application. Usually native applications 

provided by platform manufacturer run with privileged user permissions. [5] 

Mobile devices are extensively integrated with the Internet using cellular and 

wireless technologies that make them an attractive and susceptible target for criminal 

intent to exploit them. Every once in a while appears that an application with a 

malicious intent has managed to pass verification process of an application store. 

Obviously, the verification process cannot reject every single malicious application. 

On desktop computers the most common method of antivirus scanner uses a classical 

signature based malware detection mechanism. The signature detection is based on 

already identified characteristics of malware samples. Malware detection on mobile 
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devices is a challenging task due to limited processing power. The signature based 

approach is not the most suitable option for mobile devices, because matching 

algorithm running on background cause heavy burden on CPU and faster battery 

exhaustion [6]. In considering these issues, mobile devices should have security 

mechanisms against malicious applications and be equipped with an ability to monitor 

applications within the device in order to discover malicious behavior, and identify 

sensitive information leakage. To address this shortage, this thesis will discuss 

software instrumentation methods and tools for a Linux-based mobile device. 

Monitoring extensions are developed on top of the existing instrumentation tools and 

used for providing input data for a security assessment whether an application is acting 

against its expected behavior. In addition, sensitive information are monitored from 

the Internet traffic based on defined keywords. 
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2. MOBILE SYSTEM SECURITY 
 

The security is an important part of the mobile devices. Functionality of security 

mechanisms need to be addressed in every layer of software stack and as well on 

hardware level [3]. In the Linux-based operating system a good level of security is 

already built-in and can be optionally extended by security modules. This chapter gives 

an overview of information security and discuss software and hardware based security 

solutions used in Linux-based mobile devices. 

2.1. Information security 

The history of information security begins with a need to secure computer’s physical 

location, hardware and software. During the early years of information security the 

primary security threats were physical theft of equipment, espionage against the 

products of the system and sabotage. To maintain national security during the World 

War II eventually lead to sophisticated security solutions. The movement towards 

security that went beyond safety of physical locations began with a study sponsored 

by advanced research project agency (ARPA). The study was focused on a process to 

secure classified information systems and it attempted to define necessary mechanisms 

for protecting them. The Internet was made available for general public in 1990s, 

which brought connectivity between computers. Early Internet era deployment was 

treating security as a low priority and relied on a security provided by data centers. 

However, ability to physically secure networked computers was lost and stored 

information became more exposed to security threats. [7 p. 3 - 8] 

The information security can be defined as protection of information and its critical 

elements. The industry standard for information security model is called 

confidentiality, integrity and availability triangle. It defines information 

confidentiality as protection from disclosure or exposure to unauthorized persons or 

systems. The confidentiality of information is high when it is a personal information. 

When the information is complete and uncorrupted, it has integrity. Corruption of 

information can take place when it being transmitted, stored or intentionally modified 

by a computer virus. Information corruption is not necessarily caused by external 

forces. For instance, noisy transmission can cause data to lose its integrity. The 

availability enables authorized persons and computers to access information and 

receive it in the required format. [7 p. 8 - 15] 

Information system consists of components that enable information handling, 

which are entire set of software, hardware, data, people and networks that each have 

own security requirements. Software comprises applications, operating system and 

utilities. Exploiting of errors in software implementation forms substantial portion of 

attacks against information system. Hardware provides technology that executes the 

software and provides interfaces for information handling. Security policies define 

hardware as a physical asset. Data is often the most valuable part of information system 

and it is the main target of attacks. Data storage is likely to use database management 

systems, which should utilize all available security capabilities to improve overall 

information system security. The people have always been a threat for information 

systems that refers to vulnerabilities caused by system users. The security leverage 

need of information system is mainly caused by networking. The network security 

mechanisms are essential part of the information system security. [7 p. 16 - 19] 
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2.2. Threats and attack vectors 

Mobile devices encounter various threats depending on usage environment. For 

instance, threats might appear in a form of another malicious application or an 

adversary on the same local network. Vulnerable application implementations can be 

suffering in many fields, these include insecure data storage, insufficient transport 

layer protection, outdated cryptographic algorithms and many more. A security 

weakness exists when application developer assumes that other applications in the 

system are not able to access sensitive data storage. However, a malicious application 

might have gained enough privileges to read file system’s sensitive storage. Same sort 

of weakness for sensitive data occurs when an application developer unintentionally 

uses a system mechanism, which stores data temporarily for easily accessible 

locations. For instance, keyboard press caching or copy-paste buffering might use 

storage locations available for unprivileged users. Mobile applications tend to lack 

proper implementation of transport layer security or it is enabled only for 

authentication phase. Thus adversary in the same local network is able to monitor 

network traffic and capture sensitive data. Application data encryption implementation 

might use cryptographic algorithms, which are commonly known to have a significant 

weakness or does not fulfill modern security requirements. Alternatively custom made 

algorithms have been used for data encryption, which does not give enough protection.  

Application can accept input data from various sources without performing proper 

input validation and can allow an inter-process communication with other applications. 

For instance, business application handling sensitive data should restrict 

communication only for trusted applications, because sensitive data passed through 

inter-process communication may be read by third-party application in certain 

conditions. [9] 

Attack vectors are methods used to get into device that enable intruders to exploit 

vulnerabilities in the device. Mobile device attack vectors can be roughly classified in 

vulnerabilities that require a physical access to the device and vulnerabilities that can 

be exploited remotely. Remotely exploited attack vectors can be further classified 

technical and non-technical vulnerabilities. Mobile web browser is a good example of 

technical and software based attack vector, which has led to various exploited 

vulnerabilities in the recent past. The non-technical attack vector tricks the user into 

overriding technical security mechanism. [5]  

Drive-by download is an attack method taking advantage of bugs in a software, 

usually in web browsers. Visiting a compromised web page is enough to initiate 

background download of malicious code. Websites are used to exploit known 

vulnerabilities in the web browser or plug-ins and execute attacker’s code. Initial 

download is often small and its job is to pull the rest of the malicious code to the target 

device. This kind of attack has significant impact for the system security, because the 

attacker can execute code without user’s knowledge. A social engineering attack 

targets primarily to a human element of the system without gaining a physical access 

to user’s device. The user of the device is tried to be convinced to either download a 

malicious application or access malicious content on the website. The user may easily 

install malicious application that requests extensive permissions for system resources, 

and let the application bypass sandbox restrictions. Advantage over desktop computer 

environment in the most mobile systems is that user is able to review requested 

application permissions and then proceed in installation process. [8] 
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2.3. Platform security 

A mobile platform consists of operating system (OS) kernel and middleware 

components [3]. The middleware provides system libraries and services that are used 

by system components and applications.  Inter-process communication (IPC) 

framework is responsible of providing communication facilities between applications 

and services. The IPC framework enables communication between software 

components, which are hence able to utilize functionalities exported by each other. 

Application requests to system resources are typically handled by a corresponding 

system service. The system service receives a request through IPC and then performs 

actual resource access, for instance an information request for a peripheral device. 

Security model in mobile platforms are based on software isolation, access control and 

cryptographically signed applications. 

The software isolation is also known as sandboxing of application’s execution 

environment. Sandboxed application is confined so that the application is not able to 

directly access another application’s data storage. It is also possible to divide 

applications for separated domains based on application type. Domains may define 

different restriction levels for business applications that are used to handle confidential 

data and another level for third-party applications. Application process address spaces 

are also separated from one another, additionally process address space randomization 

may be used and memory areas can be set as non-executable. Intention to limit memory 

execution addresses is to prevent malicious applications from modifying its code and 

affecting to execution of other processes. A runtime buffer overflow exploit takes 

place when adversary utilizes software vulnerability and modifies a call stack return 

address to a memory segment containing injected code by attacker. Memory page 

configuration as non-executable prevents attacker injected code execution. [3] 

The access control mechanisms implement permission based model where system 

resources usage can be limited. Platform provider sets permissions required to access 

exposed APIs of system services. Also third-party developed services define required 

permission to access API. Large number of dedicated permissions allow accurate 

control policy, but might be difficult to understand. Respectively coarse permission 

control levels might violate least privilege principle, in which application must be able 

to access only resources that are necessary for its operation. [10] 

A software distribution model varies across mobile device platform manufacturers. 

Several options exist for the distribution model. Applications can be installed from 

platform provider hosted application store. In addition, multiple auxiliary stores and 

direct application loading to the device might be allowed, the latter one is also called 

application sideloading. The application signing is done by application store operator 

after the application is verified to fulfill a publication criteria. Additionally a developer 

signing is used to prove the origin of the application at the time of updating a new 

version of an existing application. An application distribution package contains a 

manifest file that defines which protected system APIs are required by application. 

Platform application installer component is responsible to check the signature and the 

manifest file and then verify that application signing authority is allowed to grant 

requested permissions. Additionally user might be prompted to approve access to user 

sensitive data, such as address book and calendar. Finally application installer assigns 

requested permission to the application in the installation process. [3] 
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2.4. Access control and enhancements 

Computer system security is growing problem, which is seen by endless stream of 

security vulnerabilities. Security research has produced numerous access control 

mechanisms to improve system security. Linux security model assigns a unique 

identifier for every user and group, which primary use is to determine ownership of 

system resources and control process permissions accessing those resources. 

Traditional file permission model is sufficient for most applications, it defines 

permissions for each file and directory. However, often finer control over permissions 

for users and groups is needed. The Linux security module (LSM) framework address 

this problem by providing a general purpose framework to Linux kernel, which allows 

security modules to be implemented as loadable kernel modules. [11, 12] 

 

File system and process privileges 

 

An extension for the traditional file permission model is called an access control list 

(ACL), which allows permission to be specified per user or per group. Minimal ACL 

configuration is equal for the traditional model, where permissions are defined 

separately for user, group and other. The ACL is actually a series of entries, each 

defining permissions for individual user or a user group. An ACL entry consist of tag, 

qualifier and permission fields. The tag specifies whether entry applies for a single 

user or a group of users. The qualifier field is an optional one, and it is used to define 

certain user or a group identifier for the entry. [11 p. 319 – 337] 

Discretionary access control (DAC) is a standard security mechanism in a Linux 

based operating system that runs each process under specified user and group. The 

DAC has a disadvantage when vulnerable process gets exploited, and the attacker 

gains access to all resources that run under the same user and group as the exploited 

process. This issue takes place because of coarse granularity of permissions in the 

DAC system. In addition, owner of a resource can decide how resource can be accessed 

by other processes. 

Linux capabilities scheme is used to divide traditional all-or-nothing process 

capability model into individually enabled capabilities. Capabilities are used to allow 

certain program to perform privileged operations. The traditional model divides 

processes in two categories; processes which bypass all privilege checks and processes 

whose privileges are checked according to user and group IDs. Processes bypassing 

all checks are called super-user and its user ID is set to zero. The traditional model 

have a coarse granularity over the process privilege control and it does not have a 

mechanism to permit a single privileged operation for an unprivileged program. 

Allowing certain privileged operation by changing effective user ID temporarily to the 

super-user, also permits process to perform other privileged operations as well. This 

kind of privilege control mechanism opens number of possibilities for malicious users 

to perform unwanted operations. In the modern Linux system an application process 

can have one or more capabilities, which are grouped for permitted, effective and 

inheritable sets. The permitted set limits for capabilities which can be added for 

effective and inheritable sets. If process drops a capability from its permitted set, it can 

never acquire it back again by itself. The effective set is the one, which kernel uses for 

privilege checking for the process. [11 p. 797 – 806] 

 

 



13 

 

 

Security enhancements 

 

Mandatory access control (MAC) provides fine-grained permission levels that can 

restrict damage. The MAC is a system where operating system is used to constrain 

processes performing an operation for system resources. A security policy defines 

restrictions how resources can be accessed, it is loaded at the startup of the system. 

Typically system administrator is the only user who can change the security policy. 

[12, 14] 

Various Linux security modules (LSM) have been implemented, which provide 

security improvements such as fine-grained MAC and reduction of an attack surface. 

Linux security modules are security extensions, which are hooked on important 

security-critical points of the Linux kernel. Linux security module framework provides 

hooks into kernel components that can be utilized by LSMs to perform access control 

checks. Currently only one LSM can be enabled at the time, although stacking support 

of multiple LSMs have been under discussion in the community several times. The 

security module hooks are implemented in a way that existing frameworks such as 

standard DAC are not disturbed. LSM hooks are not invoked when functional error is 

detected or classical security check denies requested operation. [12, 14] Linux security 

module architecture for secure enhanced Linux is presented in Figure 1. 

 

 

 
 

Figure 1. Security enhanced Linux architecture 

 

Security-Enhanced Linux (SELinux) is one of the LSM extensions that implement 

MAC security improvements. It is included in number of Linux distributions by 

default. The SELinux development was originally started as Flux Advanced Security 

Kernel (FLASK) and then further developed by National Security Agency (NSA). The 

SELinux is not intended to stop buffer over-runs or malware applications getting into 
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system, instead it can limit damage they cause. Android mobile operating system has 

also adopted the SELinux as a part of its security model. The SELinux was first 

enabled in a permissive mode for the Android, in which permission denials are logged, 

but not enforced. Full enforcement mode was enabled for Android 5.0 release [15].   

SELinux policy component defines allowed access types and operations for system 

resources [14]. Policy decision making component is separated to own component 

called security server. Access vector cache (AVC) is a component which caches 

security server access decisions to minimize overhead. The policy enforcement 

functionality is implemented in kernel subsystems. Application processes can be 

confined to its own domain and allow only minimal set of privileges to perform its job. 

SELinux assigns a type security identifier in the security context of various system 

resources that have associated permissions to define what operations are allowed. This 

model is known as type enforcement. 

SELinux requires the security context to be associated for resources that are used 

by security server to make access decision against policy [14]. In general, every subject 

and object in the system have an associated security context. For instance, a system 

process could be a subject and a file could be an object. The security context is defined 

as variable length string and it is also called security label. The security context 

consists of user, role and type identifiers. The user and the role identifier are used by 

the policy to define constrains based on identifier values. When the type identifier is 

used with a process, it identifies processes or domains that user can access. In case of 

type identifier is used for object, it defines what permission user has for it. In addition 

object gets automatically an object class identifier when it is instantiated. SELinux 

policy rule definition is shown in Figure 2. 

 

 

 
 

Figure 2. SELinux policy rule definition 

 

Figure 2. illustrates how SELinux policy rule is defined to allow process running in 

unconfined_t domain to perform transition of target process to ext_gateway_t domain. 

2.5. Hardware enforced security 

TrustZone technology is a security extension used in ARM microprocessors. It 

provides a secure domain or secure world for security-critical software execution. For 

example mobile payment and virtual keypad for credentials input are potential 

software modules to be executed in secure world in order to separate it from normal 

execution environment. The secure world is able to access memory of the normal 

mode, but access is not possible the other way round. The secure world is implemented 

as logical ARM core, which is able to utilize memory management unit to further 

divide the secure world to sub-zones. Additionally, any of the system peripherals and 

interrupts can be allocated for secure world, thus general purpose OS running on the 

normal mode is not able to access those peripheral neither see interrupts. Secure world 



15 

 

 

can be configured to run dedicated operating system or synchronous library in the 

simplest option. [4, 16] 

Virtualization is a security mechanism that enables the abstraction of system 

resources. It is implemented by placing a relatively small control program called 

hypervisor or virtual machine monitor (VMM) between OS and the hardware. In full 

virtualization privileged and sensitive instructions are trapped, while user level 

instruction run at native speed. Typically modern computer architectures can execute 

in multiple operation modes with respective privilege levels. Traditionally in the ARM 

architecture privilege levels are called user and supervisor modes. Operating systems 

are designed to execute in the privileged mode. However, in the virtualized 

environment the VMM needs to run in the most privileged mode available in the 

system. The VMM runs in a privileged mode and hosts one or more guest OSs, which 

operate under illusion to have an exclusive access for system resources. Prior to 

hardware virtualization extensions, full virtualization was possible only using dynamic 

binary translation. Performance of the dynamic binary translation is not even close to 

execution speed of native system code. To address this issue, hardware assisted 

virtualization extensions have been added for mobile system on-chips. The ARM 

architecture hypervisor mode is added to support hardware assisted virtualization 

technology. To enhance system security, one guest OS can be dedicated for security 

critical functions, while another guest OS is dedicated for less critical applications. [4, 

17] 
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3. SOFTWARE INSTRUMENTATION 
 

Many approaches to gain understanding of application’s internal behavior are 

available for the Linux environment [10]. Tools are useful for determining 

performance issues of the system and in addition provide a trace output to track 

application’s behavior. Instrumentation is a technique to analyze and modify the 

behavior of the application by inserting additional code into it [18]. The 

instrumentation can be implemented on source code or binary level. A static 

instrumentation refers to a source code level instrumentation and generates persistent 

modifications for an executable. A dynamic instrumentation is a code injection for an 

executable at runtime, thus no permanent modification are made for a binary. This 

chapter discuss instrumentation methods and tools, which are relevant for 

understanding application monitor functionalities presented later in this thesis.     

3.1. Instrumentation methods 

The main difference between instrumentation methods are level of the information that 

can be produced, a performance impact generated for the instrumented application and 

a capability to directly instrument a binary object [10]. The application can be analyzed 

as a white box, when source code is available. Instrumentation code can be added for 

relevant points of the application and then recompiled to provide trace output. 

Different analysis methods has to be used when the application is available only as 

binary executable. This is called a black box executable analysis. In the black box 

analysis behavior of the application can be analyzed by monitoring an interaction with 

the operating system. Monitoring of the application’s OS interface usage can take 

place for system calls, inter-process communication, signals and other interesting 

events. It exposes information how the application uses filesystem, network sockets 

and memory. 

Thorough instrumentation of application behavior on the mobile device is not a 

trivial task, and might be even impossible because of limited operating system 

configuration. Typically an end-user configuration of the mobile device includes a 

subset of useful debugging and monitoring facilities due to performance and security 

reasons. However, most of the Linux-based mobile devices provide built-in system 

utilities in order to perform basic level instrumentation of applications. For detailed 

application and system instrumentation purpose, there are selection of advanced 

software instrumentation tools that can be installed to the system. Additionally mobile 

OS kernel can be even recompiled to enable features required by the instrumentation 

tools. 

3.2. Tools 

Various instrumentation tools are available depending on processor architecture and 

operating system. Most of the instrumentation tools are designed primarily for general-

purpose architectures. Mobile devices are typically built on top of ARM architecture, 

which limits availability of instrumentation tools [19]. The Linux environment can be 

instrumented in several ways using utilities available in Linux mainline release. 

Instrumentation frameworks and tools are capable of instrumenting the Linux system 

on various levels such as user-space, file system, subsystems and system call interface. 
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Furthermore, presented instrumentation tools are suitable to be used in mobile devices 

built on top of the ARM architecture. Usually Linux instrumentation does not require 

patching of the kernel, but might involve modifications of kernel configuration 

depending on the target device. Instrumentation tools are presented in such order that 

underlying mechanisms providing certain kernel level tracing facilities are presented 

first, and then proceeding to instrumentation frameworks in subsequent chapters. 

3.2.1. Kprobes 

Kprobes is a dynamic instrumentation mechanism for Linux kernel, which allows 

information gathering without a need to compile or reboot the kernel. It was initially 

developed to be underlying mechanism for higher level tracing tools. The kprobes is 

organized in way that its functionalities can be easily extended by other tools. Kprobes 

package consists of user defined probe handlers, kprobes manager and architecture 

dependent exception handling mechanisms. [20, 21] 

A kernel probe is a set of handlers placed for certain instruction address, which are 

executed when a breakpoint is hit [22]. The original instruction at the breakpoint 

address is executed when handler returns and context restore is performed. There are 

three probe types available: kprobes, kretprobes and jprobe. A kprobe can be inserted 

on any instruction address in the kernel. The kprobe is also called as pre-handler, 

because it is executed before the probed instruction. The kretprobe is executed when 

probed function returns, it is also known as post-handler. Figure 3 presents simplified 

kprobe handling steps. 

 

 

 
 

Figure 3. Simplified kprobe handling flow 

 

The jprobe is inserted at the entry point of the kernel function, providing access for 

function parameter values. User defined probe instrumentation code is packed to a 

loadable kernel module that handles registration and unregistration of probe handlers 

at kernel module’s entry and exit functions respectively. Actual implementation of the 

kprobes heavily depends on processor architecture. For instance, an exception-

handling mechanism to support probe points varies across processor architectures. 
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3.2.2. Ftrace 

Ftrace is a framework of several tracing utilities for debugging and analyzing kernel 

internals [23]. The ftrace is a suitable tool for tracing performance and latency 

problems within the kernel. A debug file system is used to hold ftrace control and 

output files. The ftrace is also used as a building block for other system monitoring 

tools. The framework consists of several tracers, and the most relevant ones are 

explained below. 

 

Function tracer 
 

A function tracer is able to trace all kernel functions, its output contain function name 

and additional fields configured with trace options [23]. The trace options control data 

items and format of the ftrace output. Various data items can be included for output, 

such as a caller of the function and symbol related information. A function graph tracer 

does similar things as the function tracer, but it probes a function from its entry and 

exit points. On function entry point the graph tracer overwrites return address with a 

probe and original return address is stored in task structure. This enables function 

execution time measurement and provides reliable call stack for function call graphs.  

 

Dynamic ftrace 

 

A dynamic ftrace feature provides runtime control to enable tracing of selected kernel 

functions [23]. Runtime control is an essential feature to reduce overhead generated 

by tracing activity and it also reduces unnecessary output of the tracing session. 

Dynamic ftrace feature is a compile time option and it utilizes compiler’s profiling 

option, which adds a call to a profiling function at the beginning of each kernel 

function. Responsibility of the profiling function is to check whether to call tracing 

function or just directly return. As the profiling function gets called a lot, it is carefully 

optimized to avoid performance issues. All profiling references are collected into 

single table in the linking stage of the kernel. On kernel boot up phase each of the table 

locations are replaced with a no-operation instruction and corresponding functions are 

made available for function filter list. When certain function is enabled for tracing, 

respective table location is modified back into trace call. 

   

Event tracer 

 

Kernel introduces compile-time defined static tracepoints, which are commonly 

referred as events in ftrace context. There are hundreds of events defined, which are 

organized based on kernel subsystems. Events can be enabled separately or in groups 

for an entire subsystem. All ftrace events contain common and event-specific data 

fields. As an example, process exit event is illustrated in Figure 4. 
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Figure 4. Process exit event 

 

Each event has an associated filter expression, which controls whether a specific event 

is allowed to be added on trace output. The filter expression defines multiple numeric 

and string operators to test field values. The filter expression covers entire subsystem 

or only a single event. A trace event has an associated trigger capability, which is used 

to invoke commands. These commands can be invoked conditionally when the trace 

event is hit. Commands can be used to enable or disable other events, dump stack trace, 

take a snapshot of event at the time of trigger occurred or control entire tracing system 

state. 

3.2.3. Systemtap 

Systemtap is a dynamic instrumentation tool targeted for performance and functional 

problem solving of Linux kernel [24]. It provides an infrastructure to monitor running 

Linux kernel eliminating a time consuming process for recompile, install and reboot 

sequence. The systemtap is built on top of the Kprobes and kernel static tracepoints. 

The essential idea behind the Systemtap is to write handler scripts for events generated 

by the monitored system and tool itself. Scripts can be defined to react to several types 

of the kernel and the Systemtap internal events, such as a timer expiration, entering 

specific kernel function or a system call. A systemtap library provides wide variety of 

reusable scripts for system instrumentation purpose. 

The systemtap operates by using the system C compiler to translate a handler script 

to a loadable kernel module. A command line utility is used to invoke a probing 

session. In turn kernel module gets loaded and it hooks the probes into the kernel. The 

handler function is executed when hooked event occurs. Hooks are unregistered and 

the kernel module is unloaded as a final step of probing session. [24] 

Generated instrumentation code needs to be placed exactly right place in the Linux 

kernel, this requires system information packages to be available for the Systemtap. 

Linux kernel debug information is provided in development packages for desktop 

Linux distributions, which need to be exactly matching for installed kernel version. 

This is not the case for the most mobile devices running on top of the Linux kernel, 

hence requires Linux kernel compilation as a preparation of using the Systemtap. 
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3.2.4. LTTng 

Linux Trace Toolkit next generation (LTTng) is an instrumentation framework for 

correlated tracing of the Linux kernel, user-space and libraries [25]. The LTTng 

consists of user-space trace libraries, kernel modules and tools for controlling tracing 

session. The kernel modules are needed when intention is to produce trace output from 

the kernel itself. User-space trace libraries are required when intention is to trace user-

space applications. Linux kernel static tracepoints, kprobes and performance counter 

instrumentation facilities are supported through adaptation layer. Trace output format 

is a common trace format (CTF), which is a compact binary format containing packets 

of concatenated trace events. In order to analyze trace data, it is required to be 

converted to human readable text output. 

Actual tracing session contains attributes and object for tracing. The tracing session 

defines domains to be traced and channels associated with them. Domain in LTTng 

context means kernel or user-space. A channel specifies parameters such as buffering 

mode, context information and list of events associated with the channel. Event can be 

separately enabled or disabled within the tracing session. The context information 

fields can be optionally added for generated events, which describe process 

information and performance counter values at the time of generating an event.  

User-space application tracing for functions entry points take place with help of 

compiler’s function instrumentation option. A compiler can be instructed to generate 

instrumentation calls for entry and exit of the functions, which are hooked by user-

space tracing libraries of the LTTng. Additionally, static instrumentation can be 

performed using tracepoints, which can be placed at any point of the application. 

Tracepoints are defined either manually or generated using tracepoint tools. Custom 

argument expression of tracepoints makes it very flexible for tracing of user space 

applications. A tracepoint may have assigned an optional log level field that can be 

useful in tracing session control to limit amount of generated tracepoint events. 

Several options exist for trace output viewing; tracing session can be configured to 

show events as they arrive, record events locally to files or even relay events to remote 

machine. Built-in feature of sending trace events over the network to remote machine 

is implemented for relay daemon component, which receives events on the remote 

system. 

3.2.5. Ktap 

Ktap is the most recent addition for the Linux dynamic instrumentation facilities, it 

has been designed toward needs of embedded users. The ktap tool is still on 

development phase and hence not available in the kernel mainline. The ktap differs 

from other mainstream instrumentation tools in way that it is a scriptable utility, which 

bases on a byte-code interpreter [26]. This design decision have an advantage that it 

omits a need for a compiler toolchain installation in the target system. The ktap 

operates using a special kernel module, which implements a virtual machine to 

interpret ktap scripts. Ktap scripting language is relatively simple and efficient, though 

it supports multiple features that are beneficial for dynamic tracing needs, such as 

control structures and built-in function library. More flexibility is introduced over the 

kernel built-in facilities due to tracing block definition can be used to collect additional 

data at the time of tracepoint hit. For instance, a backtrace of executing kernel task and 

value of global variables can be stored in associative array using built-in functions and 
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data can be printed out when tracing session ends. Other instrumentation utilities 

presented in the previous chapters such as tracepoints, kprobes and function tracer are 

supported in the scripting language. 

3.2.6. Audit 

Linux Audit system is a monitoring framework to collect information about system in 

a form of Audit events. Rather than providing any additional security, Audit can be 

used to collect security relevant information about the system it is running. Properly 

configured Audit system makes possible to detect and analyze attacks againts the 

system. Audit rules are used to define which events are to be caught to a log file. This 

information can be used to determine violator of system security policy and details of 

operation. Audit consist of several components, each providing important functionality 

for overall framework. Audit components can be categorized for two main parts: user 

space utilities and kernel side system call processing module. [27, 28] Linux Audit 

framework components and their connections are presented in Figure 5. Solid line 

presents data flow and dashed control flow. 

 

 

 
 

Figure 5. Components of the Linux Audit framework. 

 

Audit kernel component 
 

Audit kernel component responsibility is to filter system calls received from user space 

applications and deliver events to user space audit daemon based on activated rules. 

The Audit kernel component implements three rule lists: user list for requests 

originated in user space, task list for clone and fork system calls and exit list for system 

call exit. The rule lists are processed in presented order. A system call can trigger just 

one rule from the lists, i.e. the first matching rule generates the Audit event. Exclude 

list is processed as a final step to check whether filter is enabled for particular event 

type. Actual system call processing takes place between the user and task lists, which 

means that limited number of rule option fields have usable value at the time of the 

user list processing. [27] 
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Audit daemon and utilities 
 

Audit daemon (auditd) is user space part of auditing, which allows inspection of 

system activities in great detail. Audit generates events based on rules, which are 

triggered by a system call or a file system access. Audit daemon is responsible for 

writing events received from kernel interface to audit log. Audit daemon configuration 

defines several options such as log file format, log file path, event rate limit and actions 

to be taken in case of disk full. Audit framework control happens through audit control 

utility (auditctl), it controls rule settings and changing of parameters for the kernel 

module. Audit search (ausearch) is a post-processing utility for filtering certain events 

from audit log file. Several filtering keys and event field values can be used as a 

filtering parameter. Audit dispatcher daemon (audispd) can be used to deliver events 

in real time to other application as well, hence enabling audit plugin implementation. 

Audit trace (autrace) is a process tracing utility designed for collecting audit events for 

a single application process. It does similar thing as strace, a well know system call 

tracing utility for Linux. Audit report utility (aureport) creates custom event reports 

out of audit event log. [27, 28] 

 

Audit rules and events 

 

Audit file system rules are used for watching access to files or entire directories. The 

file system rule defines a path and access types to trigger an event. Access type defines 

read, write and attribute change options. System call rules are watch points allowing 

more specific rule definition. The system call rule can define several field values to 

fine tune triggering of an event. Audit rule definition to catch a connect system call for 

D-Bus user bus socket is presented in Figure 6. The system call rule is added to the 

system call exit list, which allows Audit to properly inspect return value of the system 

call. In addition, it requires connect system calls to be successful, having architecture 

value set to ARM and system call associated path to be user D-Bus socket. 

 

 

 

Figure 6. Audit rule definition for system call 

 

A rule definition can contain optional user defined key parameter, which is 

automatically added for generated events. The key value is useful in log analysis to 

match event log entries for a specific rule. Figure 7 presents an Audit, which has been 

generated as a result for the Audit rule presented in Figure 6. 
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Figure 7. Audit event 

 

The Audit event in Figure 7 consists of three different types of records. A path type 

record describes accessed file system path. A socket address record contains exact path 

for local sockets. For Internet domain sockets record data would be an IP-address and 

port information. A system call record contains lot of information about system call in 

question. For instance, the system call record exposes parameters of the system call 

and its return value, process and parent process information, user and group IDs and 

name of the command used to invoke the process. 

3.2.7. Summary 

Multiple instrumentation tools are available on the Linux environment that can be used 

on mobile devices. However, restrictive software configuration on the mobile devices 

might avoid using the most suitable instrumentation tool. Typically two main 

properties of the instrumentation tools direct selection process that are level of details 

required and a need for customized event output. For instance, a scriptable utility such 

as the Systemtap is capable to hook on a system call and output content of memory 

reference arguments. Respectively an instrumentation utility providing only 

predefined static tracepoints outputs a memory reference, which obviously hides 

valuable information. Key features of presented instrumentation utilities are shown in 

Table 1. 

 

Table 1. Feature comparison of instrumentation tools 

Feature Ftrace Kprobes Systemtap Audit LTTng Ktap 

User-space tracing   x x x  

Static tracepoints x  x x x x 

Mainlined x x x x   

Output filtering x  x x x  

Require symbols   x    

Require system compiler   x    

Byte code interpreter      x 

Scriptable   x   x 

 

 

The Table 1 contains instrumentation tools and frameworks that were presented in this 

chapter. Kprobes and ftrace tools are commonly used as building blocks for other 

instrumentation frameworks. The most of the presented tools have been available in 
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the kernel mainline for long time and the latest ones are still provided as patches. The 

Ktap introduces scripting support while omitting need for a system compiler and 

symbols. This is kind a novelty feature for kernel instrumentation. 

The audit instrumentation framework was selected to be an underlying tool for a 

monitoring utility implemented as part of this thesis. The audit is available in the kernel 

mainline and its user-space components were also available. Moreover, it does not 

require system compiler to be installed and provides good set of output filtering 

utilities. Audit omits a scripting support, but that level of system call monitoring or 

customized output was not needed. 
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4. INSTRUMENTATION MODULES 
 

Monitoring extensions presented in this chapter are called application monitor and 

network traffic monitor. The application monitor is implemented as control and data 

processing extension on top of both the Audit instrumentation framework and proc 

filesystem. The function of the application monitor is to provide a report for utilized 

system resources. The network traffic monitor is a plugin extension to a Mitmproxy 

interception tool [31]. The plugin extension implements keyword-based content 

analysis for HTTP and HTTPS application layer data. 

4.1. Application monitor 

The application monitor controls the Linux Audit framework, which produces events 

according to activated rules. The Audit rules define system events to be collected. The 

Audit events are the main data source for the application monitor to generate a system 

resource usage report. The proc file system provides information about process names 

and identifiers. A startup notification of monitored application is resolved using system 

call interface. Application monitor’s architecture is presented in Figure 8. 

 

 

 
 

Figure 8. Application monitor architecture 

 

The Audit framework collects data at runtime and stores events to a log file for post-

processing purpose. The Audit control interface is used to setup system wide rules for 

file system paths and system calls. Process handling system call rules are used for 

collecting process identifiers (PID) and thread identifiers (TID). Both the PID and the 

TID values are used for filtering relevant information from the Audit log files. Some 

of the functionalities in the application monitor are tightly connected to the Sailfish 

operating system way to handle its activities. For instance, native application start-up 

condition detection by monitoring certain system calls. 

 

Application monitor execution 

 

The application monitor is a console application; it is started from the command line 

within the monitored device. The application monitor execution can be roughly 

divided in three phases. In a preparation phase the proc file system provides details of 
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native processes that are to be assigned for started applications. Then the application 

monitor is configured for observing process state changes. In monitoring phase, one 

of the native applications has been started and the Audit is collecting events. In 

addition, Internet domain socket information are polled from the proc file system. In 

post-processing phase, the monitored application process has exited and filtering is 

applied for the Audit event log. 

 

Native application startup detection 

 

An application startup detection feature is implemented in order to synchronize 

enabling of Audit framework with the start of the monitored application. Unnecessary 

events received prior to monitoring session are discarded, making analysis of Audit 

events easier. Another advantage is a PID detection for monitored application. 

Otherwise PID of each application process should be resolved manually before starting 

the monitoring session. Application monitor execution flow is presented in Figure 9. 

 

 

 
 

Figure 9. Application monitor execution flow 

 



27 

 

 

The application monitor detects a startup condition of the native applications by 

attaching a tracer for each booster process. The native application startup detection 

method bases on a principle how applications are started in Sailfish OS. Sailfish 

application launcher creates a process called booster for each native application type 

in the system startup phase. A new booster process is created when the native 

application takes existing booster process in use. Booster processes are used by 

Sailfish application launcher to reduce application startup delay. The booster process 

exists for all native application types: qt5, silica-qt5 and generic. Figure 10 shows 

application monitor console output of native application detection. 

 

 

 

Figure 10. Native application startup detection 

 

The application monitor resolves booster process identifiers and waits for the user to 

launch an application. Finally application is detected and its real process name is 

resolved as can be seen in Figure 10. 

Application monitor uses a process trace system call to attach for each booster 

process separately. Attach causes a stop signal for target process, which is in turn 

arranged to stop at every system call enter and exit entry points. The application 

monitor catches process state changes and looks from CPU registers whether the 

system call is a request to change name of the calling thread. The application monitor 

uses the process name set request as indication for application startup detection. 

 

Application thread detection 

 

Typically an application creates multiple threads during execution. Thread identifiers 

are collected and used in log file filtering phase to identify Audit events having a 

relation to the monitored application. In general, there are two types of application 

threads to be detected; booster process threads that already exist at the time of the 

application startup, and threads that are created during application execution.  

Each booster process has threads that exist prior to actual application startup, those 

are resolved using the proc file system that exposes system process information. In the 

Linux-based environment, the proc file system contains a directory for each process. 

Thread identifiers are available in the process-specific directory. The booster PID is a 

process group leader, which is assigned for the started application. This information is 

used to resolve TID belonging to the monitored application process. At application 

runtime created threads are detected from the Audit log file by searching system call 

events that have been triggered by a clone system call. 
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Socket monitoring 

 

Socket connections are monitored to get information of both local and Internet domain 

sockets activity during execution of monitored application. Socket monitoring is 

implemented with two separated approaches; by polling the proc file system and 

parsing socket information from the Audit log file. The socket information retrieved 

from the proc file system provides Internet domain sockets and contains also 

connections opened prior to the monitoring session. Collected sockets are system wide 

and hence might be created also by background applications. Monitoring of the 

Internet domain sockets are performed in a dedicated thread, which polls transmission 

control protocol (TCP) and user datagram protocol (UDP) specific files for new 

sockets. Each socket has an associated file system object, which is uniquely identified 

by index node (inode) entry that refer to a file system object node. The polling thread 

compares the proc file system sockets against the existing entries in the application 

monitor’s socket list. In case of a new socket is found, it is appended to the socket list. 

Socket address and port information is stored for local and remote addresses. As an 

example, TCP sockets section of result report is presented in Figure 11. 

 

 

 

Figure 11. TCP-socket entries in the result report 

 

In the Audit log filtering option, socket address records are filtered out from the Audit 

log and stored to a socket connection log file. A socket log entry contains address 

family, process information and host address for Internet domain sockets. 

 

Results report 

 

The application monitor generates the result report for thread identifiers, sockets and 

audit rule hits. Audit rule match section of the report contains filtered and unfiltered 

rule match results. Figure 12 shows rule match report for sockets and system calls. 
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Figure 12. Report for sockets and system calls 

  

Unfiltered result column shows all rule hits for the entire Audit log file, i.e. it does not 

distinguish whether an audit event was generated by monitored application or a 

background process. Filtered result column shows only rule match results, which PID 

or parent PID field value match for the collected application thread identifiers. This is 

one way to identify the log entries generated by the monitored application. Individual 

Audit rule hit counts are not visible in the results. However, the count values can be 

resolved using Audit event log filtering tools. The Audit rules are read from the rule 

definition file and each identifier is added to the result report as well, this enables Audit 

rule changes without recompiling the application monitor itself. Complete report of 

application monitor can be found from appendix 1. 

4.2. Network traffic monitor 

The network traffic monitor plugin extensions can be used for analyzing HTTP and 

HTTPS network traffic intercepted by mitmproxy. The mitmproxy is a man-in-the-

middle (MITM) proxy, capable of extracting encrypted application data from transport 

layer security (TLS) and secure socket layer (SSL) connections [30]. The application 

layer data is provided as a plaintext for the monitor plugin. The network traffic monitor 

runs entirely on target device and performs data analysis in real-time. User defined 

keywords are searched from multiple HTTP header fields and message body. Results 

are stored in several files that contain secure connections, certificate details and 

application layer data analysis results. 

4.2.1. Mitmproxy 

The mitmproxy supports multiple proxy operation modes. Suitable operation mode to 

be used depends on configurability of a client and use case. A transparent proxy mode 

is ideal option, when the client cannot be configured explicitly to use a HTTP proxy. 

In the transparent proxy mode client configuration can be omitted, because traffic is 

directed into a proxy at the network layer. Client is not aware of existence of the 

transparent proxy. In network monitor setup proxy server and routing mechanism are 

running on the same host, hence redirection is accomplished using iptables redirection 

mechanism. The iptables is a packet filtering and network address translation (NAT) 
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capable tool in the Linux kernel. The transparent proxy needs to consult iptables in 

order to resolve original destination address. 

For secure connection interception mitmproxy works as certification authority (CA), 

it contains a full CA implementation to generate interception certificates on the fly. 

Secure connection handshake process is illustrated in Figure 13. 

 

 
 

Figure 13. Mitmproxy SSL handshake message flow 

 

1. Client establishes connection, which gets redirected to mitmproxy according 

to iptable rules. Mitmproxy is configured to listed local host port on the same 

host as client. Mitmproxy retrieves original destination utilizing routing 

mechanism. 

 

2. Client initiates SSL connection as it thoughts to be communicating with remote 

server. Client sends server name request (SNI) to indicate host name it attempt 

to connect. 

 

 

3. Mitmproxy establish secure connection to remote server using SNI requested 

by client. 

 

 

4. Server responds with SSL certificate containing common name (CN) and 

subject alternative name (SAN). These values are used to generate interception 

certificate. 

 

 

5. Mitmproxy generates interception certificate and continues handshake process. 

 

 

6. Client starts to communicate over secure connection. 

 

 

7. Mitmproxy passes client request to remote server using secure connection. 

 

 

Client device needs to have proper certificate files installed for mitmproxy CA in order 

to avoid browser warning for SSL connections. 



31 

 

 

4.2.2. Monitor plugin 

The mitmproxy provides an event driven Python scripting application programming 

interface (API) for plugin implementation. The scripting API can be used for 

modification of HTTP messages at runtime, and for implementing additional network 

traffic monitoring facilities. The scripting API provides hooks for several events such 

as request, response and connection information. Monitor plugin architecture is 

presented in Figure 14. 

 

 

 
 

Figure 14. Mitmproxy monitor plugin architecture. 

 

The network monitor plugin is automatically loaded at the startup phase of the 

mitmproxy. The monitor plugin initialization contains a processing of a rule file and 

opening files for both events log and server connections. Rules are defined as key-

value pairs, in a way that the key is a symbolic name for actual plaintext string to be 

searched from intercepted traffic. The event log contains entries that describe rule 

matches found during monitoring session. The match event contains entire request line 

section of the HTTP request that match was detected for. In addition, event details 

contain a timestamp, client and server address, scheme and match type. The match 

type can be either plaintext or base64. An event containing a request line match is 

presented in Figure 15. 
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Figure 15. Monitor plugin event for a request line match. 

 

A standard HTTP request consists of a request-line, a collection of headers and a 

body section. The request-line begins with a method, followed by uniform resource 

identifier (URI) and protocol version. The method defines an operation to be 

performed on the resource identified by URI. The header fields are used for passing 

additional information about the request to the server. The message body section is an 

optional part, when it is available it is used to carry entity-body associated with the 

request. The monitor plugin hooks to mitmproxy’s client request and server response 

events. Actual data inspection for supported HTTP request’s fields are performed on 

a client request handler. Details of upstream certificate are resolved on a server 

response handler. 

The request-line inspection is performed to make sure that a query string does not 

contain user sensitive data. Content of entire request-line is converted to lowercase 

and then compared against plaintext keywords defined in the rule file. The request-line 

is also split in key-value pairs to perform both a base64 decoding and a plaintext 

comparison. The base64 is encoding scheme used to represent binary data in an ASCII 

format. 

The HTTP request may contain a cookie header field. The cookie is a small piece 

of data stored in a user’s web browser. Cookies are sent from the websites and stored 

in a user’s browser. The browser sends the cookie back to the server when the webpage 

is revisited. The cookies provide a mechanism for a website to remember user’s 

previous activity. The type of cookie can be either session or persistent. The session 

cookie is temporary and is removed when the web browser is closed. The persistent 

cookies remain in the web browser over sessions and are removed until they expire. 

The cookie consists of key-value pairs and can potentially store sensitive information. 

The network monitor plugin performs parsing for the cookies on client request handler. 

Content of the cookie is inspected the same way as the other request fields mentioned 

above.  

The body section is used commonly with a put request to deliver data from the client 

to the server. The put request has an associated header specifying a type of the content 

that is ignored on the content parsing. The body section of the put request is inspected 

on the same way as the request-line. The purpose of the server response handler is to 

extract information of secure connection upstream certificate and store it to server 

connections log file. Format of extracted certificate information is shown in Figure 16. 
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Figure 16. Extracted certificate information 

 

Server connection log contains client and server connections addresses, and details of 

upstream certificate such as organization (‘O’) and common name (‘CN’). 
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5. TEST CASES 
 

The goal of test cases is to produce information to perform behavior and security 

assessment for application under testing. Test cases try to provide an answer for 

questions: “what system interfaces and resources are utilized by the application and 

does the application expose user sensitive data using Internet connectivity?” 

5.1. Target environment 

Test cases are executed in Jolla smartphone, which runs on top of open source Sailfish 

OS. The Jolla was selected as a target environment due to its openness and that it 

represents minority on mobile market. Additionally such an open system allows 

changing of kernel level configurations and extensive usage of instrumentation tools. 

Sailfish is a Linux-based mobile OS combining Jolla’s user interface and middleware, 

Mer core and kernel hardware adaptation. In addition for native Qt5 applications 

Sailfish OS supports Android application through third-party libraries [29]. Figure 17 

presents Sailfish operating system components. 

 

 

Figure 17. Sailfish OS architecture. 
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Native applications in Jolla are built using Qt5 Sailfish silica components [29]. 

Native applications runs with privileged user permissions to access user sensitive data 

storage of Sailfish OS, such as contacts, calendar, messages, gallery etc. Native 

applications run as user identifier (UID) “nemo” and group identifier (GID) is set to 

“privileged”. 

Android applications are supported by the Sailfish OS via third-party provided 

Alien-Dalvik virtual machine. Android applications do have different security policy 

compared to the native applications, because they do not have permission to access for 

privileged data storage and application permissions are requested in the installation 

phase. Installation procedure follows general Android application installation, where 

user needs to confirm application permission requests to proceed in installation. In the 

installation Android applications get assigned exactly same UID and GID values, 

which are set for certain application every time it starts. In addition all Android apps 

are assigned to process control group created by Alien-dalvik, which process group 

identifier is same as Alien-dalvik process identifier (PID). 

Mer core is openly developed set of services and utilities between user interface and 

kernel. Its intention is to provide mobile-optimized core distribution for device 

manufacturers using Qt and HTML5 technologies. Mer core is maintained by Mer 

project and it is used in several different projects including Jolla. [30] 

Sailfish kernel is Android fork of standard Linux kernel; it supports Android specific 

additions such as binder IPC mechanism, wakelocks, ouf of memory killer and 

Android shared memory. Jolla has implemented hardware adaptation for kernel to 

support HW configuration. 

5.2. Application monitor testing 

Application monitor is able to generate a report of Audit events for file system access 

and system calls used by monitored application. Event log output of the monitoring 

session is used for identifying system resource usage and outbound socket connections. 

In general, file system path rules are useful to track access for certain paths storing 

user sensitive data. The system call events provide detailed information about system 

activities and can be used to determine monitored application relationship to other 

system resources and services. 

5.2.1. Environment preparation 

Running the application monitor and Audit framework in the Sailfish OS based mobile 

device requires kernel level system configuration and user space component 

installation for target device. Jolla device used in testing was equipped with 

Tahkalampi software release, which is equal for version 1.0.8.21 of Sailfish OS. This 

chapter introduces how Jolla device was configured in order to perform tests using 

application monitor. 

Linux kernel configuration requires several options to be enabled for a target device 

specific configuration file to take advantage of Audit framework. End-user version of 

Jolla kernel configuration does not enable all options required for Audit framework. 

In addition for existing Audit framework related kernel configurations, relay and Audit 

system call support were enabled. Audit system call configuration enables Linux 

kernel low-overhead system call auditing infrastructure, which enables Audit 
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framework to trace system calls. Relay support enables efficient mechanism to transfer 

large amount of data from kernel to the user space. Audit framework uses relay 

interface to deliver events for audit user space dispatcher component. 

Kernel configuration changes require compilation of the kernel and updating of 

corresponding flash image to the Jolla device. Kernel compilation produces a zImage, 

which is to be packed with a ramdisk to form a boot image. The ramdisk image 

contains initial root file system, which is loaded as part of kernel boot. The ramdisk 

changes were not needed, thus it was extracted out of the device’s boot image and then 

repacked to with compiled zImage. A new boot image also involved adjustment of 

image file offsets, because the compiled zImage was a bit larger than the original one 

due to added configurations. In order to update the new boot image for Jolla device, it 

was required to perform bootloader unlock operation to allow operating system to boot 

from a custom boot image. Audit user space components were compiled from source 

and installed to the Jolla device. 

5.2.2. Audit rule configuration 

Audit rule configuration plays a significant role in application monitoring, because the 

accuracy of rules define usefulness of the event log. User sensitive data access attempts 

are one of the most interesting things to look for in application monitoring. Jolla device 

stores application and user sensitive data to the file system paths accessible by nemo 

and privileged user groups. A privileged storage contains user sensitive data such as 

contacts, images, calendar, notifications, social media and positioning information. 

The privileged path is accessible only for certain native applications belonging to 

privileged user group. Applications running with privileged permission can access all 

file system paths restricted for privileged group. These file system paths are added to 

the Audit rules to generate separated event for each watched file system path. File 

system watch rules for application data storage are presented in Table 2. 

 

Table 2. Watch rules for application data storage 

Path - /home/nemo/.local Access Key 

/share/jolla-email rwa email 

/share/commhistory rwa commhistory 

/share/system/privileged/Contacts rwa privileged_contacts 

/share/system/privileged/Images rwa privileged_gallery 

/share/system/privileged/Calendar rwa privileged_calendar 

/share/system/privileged/Notifications rwa privileged_notification 

/share/system/privileged/Posts rwa privileged_posts 

/share/system/privileged/Sync rwa privileged_sync 

/share/system/privileged/qtposition-geoclue rwa privileged_position 

/share/system/privileged rwa privileged_other 

/share rwa nemo 

 

 

A permission parameter for file system rules specifies, which type of access triggers 

an event. All monitoring session rules are defined to generate event for file read, write 
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and attribute change. A key parameter is useful for report and post processing utilities 

to classify events. The last rule in the Table 2 collects all application data storage 

events, which are not matching for the preceding rules. 

To track system resource usage, some of the system devices can be directly watched 

with file system rules. These devices are opened when the application starts to use 

them and closed at the time of the application termination. For example multimedia 

system devices, such as camera and audio can be watched with file system rules. Rules 

for camera and audio device access are presented in Table 3.  

 

Table 3. Watch rules for multimedia devices  

Path Access Key 

/dev/v4l-subdev8 rw back_camera 

/dev/v4l-subdev9 rw front_camera 

/dev/snd rw capture_playback 

 

 

Multimedia devices that handle user sensitive data are audio recording and camera. 

For instance, malware application might try to record phone call or use camera and 

later on upload recorded files for remote server. The most of hardware devices are 

already opened by system services at device startup phase and functionalities are 

provided for upper layers through specific services, hence watching that kind of device 

nodes directly do not generate Audit events. 

To detect trivial system compromise attempts, file watch points are added for 

shadow, passwd and group files that hold encrypted users’ passwords, system account 

information and user groups respectively. Audit watch rules for account monitoring 

are presented in Table 4. 

Table 4. Watch rules for account monitoring 

Path Access Key 

/etc/shadow wa Shadow 

/etc/passwd wa Passwd 

/etc/group wa Group 

 

 

In case of a malicious application manage to gain root access to a device or some other 

way manage to exploit system, it most probably attempts to deliver collected data to a 

remote server to take advantage of it. Data needs to be delivered by using one of the 

Internet connectivity options of the device. In order to detect a usage of connectivity 

interfaces, system calls are monitored for sockets and selected inter-process 

communication mechanisms. Audit system call monitoring rules are presented in 

Table 5. 
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Table 5. System call rules 

System call Options Key 

connect  path=user_bus_socket dbus_user 

connect  path=system_bus_socket dbus_system 

connect success=1 connect 

clone success=1  clone 

socket success=1 socket_other 

socket success=1, a0=af_local socket_local 

socket success=1, a0=af_inet socket_inet 

socket success=1, a0=af_inet6 socket_inet6 

socket success=1, a0=af_netlink socket_netlink 

socketpair success=1 socketpair 

pipe success=1 pipe 

shmat, shmdt, shmget success=1 shared_mem 

recvmsg, recv, recvfrom  success=1 recvmsg 

sendmsg, send, sendto success=1 sendmsg 

ioctl success=1 ioctl 

 

 

Data exchange activity between processes within the same host is monitored using IPC 

related system call watch points. Linux-based operating system provides various 

facilities for IPC, such as D-Bus, local sockets, message queues, shared memory and 

pipes. The D-Bus provides two separated buses for communication, which are watched 

using connect system call rule. D-Bus watch rules contain an option to specify a file 

system path for user and system bus sockets. The usage of message queues are 

monitored using recvmsg and sendmsg system calls and their variations. A watch point 

for socket system call logs an event for each successful socket creation. Event data 

contains socket details in its data fields, which are used for distinguishing local and 

Internet domain sockets. Intention of other socket related system call watch points are 

to provide additional information for socket connection in question. Monitoring of 

hardware device control is done using an ioctl system call, which exposes controlled 

device and request details. 

5.2.3. Test sessions 

Tests were performed for pre-installed applications and applications available from 

Jolla application store. In addition, applications were tested from openrepos, which is 

a distribution channel for applications that do not pass a validation process of official 

application store, or development of an application is still in progress. Test focus was 

set for native applications since some of the application monitor features rely on 

Sailfish OS. Various applications were selected from different categories. Goal was to 

select applications that would use as many system functionalities as possible. 

Tests were run for one application at the time and avoiding use of other applications, 

which could cause unnecessary events for monitoring session output. Tested 

applications were operated normal way by trying to cover all functionalities available. 

With a full set of defined Audit system call rules, test session duration was kept 
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relatively short in order to avoid exhausting output log. Tested applications and Audit 

rule match results are presented in table Table 6. 

 

Table 6. Application monitor test results 
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Application 

jolla-calendar      x  x x x x   11 4272 1:05 

jolla-camera x x x   x   x x x  x 110 11900 1:14 

jolla-contacts    x  x  x x x x x x 12 7459 1:41 

jolla-email     x x x x x x x x x 27 9302 1:40 

sailfish-maps      x x x x x x  x 22 6033 1:20 

sailfish-browser       x x x x x  x 41 5601 0:36 

Harbor-meecast       x x x x x   14 6275 1:10 

Harbor-friends       x x x x x   25 15365 2:03 

Harbor-recorder   x     x  x x   17 35010 0:55 

 

 

Audit rules in the result table columns are named according to real rule identifiers, 

with an exception that multiple results are combined for a single result column for 

privileged files, inet sockets, dbus and message queue. The results do not contain all 

Audit rules being active during testing, because those were used to provide additional 

data for analysis of the other events. Applications are named exactly how those are 

identified in the device. Application names preceded with “Harbor” denotes that 

certain application is from sailfish store or openrepos. Browser and maps application 

are third-party provided applications. Results are taken from unfiltered Audit log file 

to avoid dropping out important events. The details section denotes number of 

application threads detected and Audit events collected during the test session. 

Duration is total time, which tracing was active. 

5.2.4. Results analysis 

Based on the results summary of the application monitor, there was no suspicious 

applications found. However, it required a deeper investigation for Audit event output 

to get better visibility of IPC mechanisms and Internet domain sockets usage. Sailfish-

maps was selected to be an application for further analysis. 

According to the result report, the sailfish-maps application did a file system access 

for the privileged storage and utilized several IPC mechanisms. Audit event filtering 

for file system access events exposed multiple events for the privileged storage. 

Accessed path contained a database for location services and nemo-user accessible 

geoclue service storage. This was analyzed to be a normal operation of the sailfish-

maps application. 
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System call events were used to identify application process causing triggering of 

an event. The most of the system call argument fields were not usable on analysis due 

to memory reference type of argument. One exception being a connect system call 

event that exposes address to be connected in human readable format. Analysis for IPC 

and internet domain sockets usage needed collecting of individual rule match counts 

at the first place. Rule match counts are presented in Table 7. 

 

Table 7. Sailfish-maps Audit events 

Rule name Number of hits 

recvmsg 3886 

sendmsg 1859 

socket_inet 75 

socket_local 30 

socket_other 9 

socket_netlink 8 

dbus_user 8 

dbus_system 7 

pipe 5 

 

 

Relatively high number of message queue send and receive events were generated by 

various processes in the system, those include the sailfish-maps related processes. D-

Bus session and system bus events were triggered by the sailfish-maps application and 

the geoclue providing D-Bus based location information services. Pipe events were 

also generated by the geoclue services. 

Local socket events were produced by system daemon logging facilities, Android 

system logging and property service usage, wayland window manager and virtual 

keyboard connection. Internet domain sockets were connections for servers providing 

map data, those were opened multiple times for the same IP-address and different 

servers as well, which explains relatively high number of connections. Netlink socket 

events were raw type sockets, which were created by sailfish-maps application or one 

of its parent processes. In addition, Audit framework used a netlink socket to control 

its kernel component, those events were simply discarded. Sockets falling to the 

“socket_other” rule were created by the geoclue service. 

5.3. Network monitor testing 

In order to analyze HTTP and HTTPS network traffic entirely in the Jolla device, the 

mitmproxy with a network monitor plugin was installed to the device. All network 

traffic to be analyzed were routed through localhost port, which the mitmproxy was 

listening. This was accomplished by using iptables. In addition, a mitmproxy 

interception certificate was installed to the device to avoid the Internet browser 

warnings about untrusted secure connections. 

Iptables output chain rules were defined to route standard HTTP and HTTPS ports 

to a loopback interface port 8080 that is the listening port of the mitmproxy. The output 

chain rules use destination network address translation (DNAT) target to rewrite 
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address of matching IP packets. Mitmproxy was configured to run as dedicated user 

called mitm. This was done to avoid iptables to route packets originated from the 

mitmproxy again to the loopback interface. Without an owner option packets would 

be routed in an infinite loop to the loopback interface. Iptables rule setup is presented 

in Figure 18. 

 

    

 

Figure 18. Iptable rules for mitmproxy 

 

Several plaintext keywords were added to network monitor’s rule input file to track 

phone identification numbers, personal information, location and account details. 

These keyword rules were automatically compared to application layer network traffic, 

which was routed through the mitmproxy. List of the keyword rules are presented in 

Table 8. 

Table 8. Network monitor plaintext rules. 

Key Value 

first_name harri 

last_name luhtala 

app1_pw 0765 

uname_1 username 

uname_2 harriluh 

email gmail 

imei 359745050103180 

phone_num 4877130 

bt_address 5056a8002728 

gps_lat 65.0 

gps_long 25. 

 

 

Several test cases were run to prove functionality of the network monitor plugin. Goal 

of simple test cases were to generate data in various forms, which should trigger 

defined rules. Test data was generated mainly with a native browser of the Jolla 

smartphone. As the network monitor is capable to inspect several HTTP request fields 

in a plaintext and a base64 format, all of those options were covered in the simple test 

cases. In addition, tests were run for real applications, which were observed to be using 

HTTP or HTTPS application layer protocol for communication. 

The mitmproxy was started in a mitmdump mode with a transparent proxy option 

enabled. These startup parameters did not enable interactive shell for flow examination 

and neither retain HTTP flows in a memory for runtime manipulation. Instead, the 

mitmdump mode just prints client connections and monitoring plugin output to 

console. 
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Request line tests 

 

Test data was generated with the Sailfish native browser by entering HTTP get 

requests. The request line contained matching string identifiers for the monitoring 

plugin keywords. The request line parameters were entered in plaintext and base64 

encoded format. Additionally single request line content was also mixed with plaintext 

and base64 encoded values. The network monitor plugin writes runtime analysis 

results for the match log file. Test cases and results are presented in Table 9. 

 

Table 9. Test result for HTTP request line 

Request line Key type scheme section 

GET http://www.kaleva.fi/harriluh/ uname_2 plaintext http 
request 

line 

GET http://www.kaleva.fi/?data= 
MzU5NzQ1MDUwMTAzMTgw 

imei base64 http 
request 

line 

GET http://www.google.fi/ 
?q=4877130&x=MDc2NQ== 

phone_num, 
app1_pw 

plaintext, 
base64 

http 
request 

line 

 

 

The request line column presents HTTP requests used in the test cases. Domain names 

used in the requests are just for giving a clue how parameters might be delivered within 

the request line. Subsequent columns are test result provided by monitoring plugin. 

Tests cases did prove that the network monitor plugin is capable of identifying 

plaintext and base64 formatted strings within the HTTP request line. 

 

Tests for encrypted content 

 

Monitor plugin was tested with PUT requests that involve sending of an encrypted 

content section. This was accomplished by using the native browser and entering input 

data for secure websites. Identifier strings were entered in website’s forms and then 

request was submitted. All network traffic for standard HTTPS port was routed 

through the mitmproxy as explained in environment preparation section. Test results 

for encrypted content are presented in Table 10. 

 

Table 10. Test results for encrypted content 

Request type, input form data key type scheme section 

PUT, 
username: harriluh 
password: 0504877130 

uname_2, 
phone_num 

plaintext, 
plaintext 

https content 

PUT, 
username: 359745050103180 
password: MDUwNDg3NzEzMA== 

imei, 
phone_num 

plaintext, 
base64 

https content 

 

 

Input data was entered on username and password fields as shown in above table. 

Network monitor plugin was able to successfully detect plaintext and base64 decoded 

content from the submitted requests. 
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Tests for cookies 

 

Web browsers commonly use cookies for storing state information, which is delivered 

back to server for subsequent connections for the same web site. Cookie content 

inspection was tested using cookie testing web page that allowed user to define content 

of the cookie. Network monitor match log entry for cookie testing is presented in 

Figure 19. Match log entry for cookies. 

 

 

Figure 19. Match log entry for cookies 

 

The match log entry contains two rule matches in a single get request. Plaintext and 

base64 encoded fields were detected for cookie section of the request. 

 

Real applications 

 

Real application testing was performed in a way that the phone would be used in a 

daily usage. This involves using various applications and installing new ones from 

application stores, using browser, messaging services and social media. The network 

monitor was enabled on background to expose suspicious activity for outbound HTTP 

and HTTPS ports. Identifier keywords were exactly same as in the simple test cases, 

which will obviously generate false positives for match log in normal use. This means 

that the match log file needs to be investigated manually after test session to identify 

false positives. Network monitor tests result for real application are presented in Table 

11. 

Table 11. Rule match results for applications. 

Application – version Key type Scheme 

Vopium instant 
messenger – 3.4 

phone_num, 
imei 

plaintext, 
base64 

https 

Sailfish maps – 1.0.3 gps_lat, gps_long plaintext http 

Apptoide appstore – 
5.2.0.2 

gps_lat, 
gps_long, 

imei 
plaintext http 
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Several instant messenger application were installed to the device as personal 

information related security issues have been reported for this application category in 

the past. Vopium instant messenger application exposes user’s phone number and 

International Mobile Identity (IMEI) code for remote server. This information was 

delivered using secure connection and the IMEI code was base64 encoded within the 

request’s content section. Phone number is used as a user name in the Vopium 

application. One reason to deliver IMEI could be intention to prevent multiple logins 

with the same user name. The network monitor was not able to detect other suspicious 

communication events based on defined keywords for instant messenger applications. 

Some of the tested applications did stop working due to failing MITM proxy certificate 

interception. The interception of the MITM proxy might be failing, because a 

certificate pinning prevents interception process. The certificate pinning means that an 

application contains hard-coded information of the certificates to be used by the server, 

thus the application trusts to certificates signed by a small set of certificate authorities. 

In addition, many of the instant messengers were using different application layer 

protocol such as extensible messaging and presence protocol (XMPP). 

Device location information was exposed in a form of global positioning system 

(GPS) coordinates by two applications. Sailfish maps was delivering coordinates using 

HTTP get request. This was harmless activity because location information was used 

for requesting map data for certain location. Apptoide application store delivered a 

location information and IMEI code for a remote server. This activity happened when 

application installation was started in the Apptoide store. Additionally unsecure HTTP 

connection was used to transfer sensitive information to the remote server. 
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6. DISCUSSION 
 

The main challenges in thorough mobile application instrumentation are to identify 

limitations caused by target system and to select a suitable instrumentation tool. It 

might be cumbersome to understand what are the kernel level configurations required 

by instrumentation tools. In the most cases, mobile device’s limited and performance 

optimized configuration cause obstacles for instrumentation frameworks. This 

obviously leads relatively big efforts due to need for cross-compilation environment 

setup and kernel rebuild with required options. Additionally device manufacturer 

might have implemented security features on the device in order to prevent 

unauthorized updates of the kernel. The mentioned limitations give an overview what 

kind of problems might be faced in mobile device environment, before actual 

instrumentation is even started. 

 Instrumentation frameworks produce system wide events, which of course can be 

limited by defining a monitoring rule associated with an application process identifier. 

However, the application process identifier does not exist before the application is 

started, and typically multiple threads are created during execution. To limit amount 

of instrumentation events, understanding of the monitored system is required in order 

to properly configure selected instrumentation framework. In general, too widely 

defined instrumentation rules might overload resource-constrained system when CPU 

intensive application is monitored. For example, this issue happens when system call 

interface is monitored and there are no restrictive parameters defined for the event 

generation. 

The Audit framework was selected as an underlying instrumentation tool for 

application monitor extension. The Audit turned out to be a capable tool to monitor 

privileged storage and system calls with flexible configuration options, thus it was a 

good choice for detecting malicious applications that would act against their expected 

behavior. Additionally, Audit was configured to observe an access to the privileged 

storage, system devices and network resources. However the Audit does not provide a 

way to monitor explicitly a single application. It was soon realized that events 

produced with the Audit would need some sort of processing to get understanding of 

application’s resource usage. The application process and thread identifiers are the 

information in Audit events to distinguish them to monitored application. However, 

these identifiers could not be resolved after closing the monitored application. These 

issues led to a decision to develop a native application process detection mechanism 

that is run prior to the Audit framework. The application startup and dispose detection 

mechanism automatically controls the Audit framework to limit event generation for 

the time period application being active. In addition, filtering of Audit events were 

implemented based on collected process and thread identifiers to distinguish 

monitored application events. 

The goal was to utilize existing instrumentation tools and extend functionalities to 

provide an automatic way to observe suspicious applications. The developed extension 

and Audit framework were successfully used for application resource usage 

monitoring. For instance, the application monitor was able to identify privileged 

storage usage and an access to sensitive device resources such as audio recording or 

camera. Monitored application’s usage of Internet domain sockets were also identified. 

In general, the application monitor was able to produce a report that can be used for 

application resource usage assessment. A problematic situation happens when an 

application does an access to a resource through inter-process communication. In this 
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case, application access is tracked for IPC mechanism usage, not for the actual 

resource. The resource access is marked to a background process although it is initiated 

by monitored application. 

As the application monitor provides an overview of used system resources without 

providing any analysis results for data content, network monitor was developed to 

search keywords from the outbound HTTP and HTTPS traffic. The keyword 

definitions passed to the monitor as input parameters resulted several findings for 

encrypted and encoded content as well. Problems were generated by several 

applications, because protection mechanism against SSL connection interception was 

obviously implemented using certificate pinning. The network monitor functionalities 

could be easily further developed by adding more clever content analysis functionality 

within limits of target system performance. The content analysis functionalities 

developed in scope of this thesis were plaintext and base64. The network monitor or 

equivalent setup could be considered as potential background process on the mobile 

device. In a real usage, network traffic routing through the transparent proxy should 

be dedicated for the subset of applications at the time, and number of keywords should 

be limited. Additionally keywords contain exactly the same sensitive information that 

would interest an attacker. Thus, secure execution and storage environment should be 

taken in use for that sort of monitoring application. 

Related research papers have been published that discuss monitoring of applications 

and tracking of sensitive data on mobile devices. The prior research uses mainly 

dynamic taint analysis approach to malware detection and analysis. A good example 

of this is TaintDroid for Android [32]. Although the TaintDroid monitoring approach 

differs from the solution presented in this thesis, it has somewhat the same goals. The 

TaintDroid tracks sensitive information flows in the system. The tracking takes place 

by automatically labeling sources of sensitive data and observing how labeled data 

propagates in the system. The taint analysis provides more accurate results for the 

sensitive information tracking compared to the approach presented in this thesis. The 

main advantage of TaintDroid is that information flows between applications are 

identified and modified sensitive information can be detected. 
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7. CONCLUSION 
 

This thesis presented a resource usage monitor and a keyword-based network traffic 

content monitoring for mobile device environment. General purpose system 

instrumentation tools were extended by developing additional features that enable 

behavior assessment of monitored application. Test cases were performed to prove 

functionality of developed extensions and to monitor native applications of Jolla 

smartphone. The test cases focused to discover malicious behavior and sensitive 

information leakage. 

 The resource usage monitor for native applications did not produce finding related 

to unexpected system resource usage, however the selected method was proven to be 

suitable for monitoring applications in a resource-constrained mobile device. The 

network traffic content monitoring produced multiple matches that can be interpreted 

as personal information. Although network traffic content analysis were performed 

only for limited number of application layer protocols and subset of their content and 

encoding schemes, it produced promising results. To further develop network content 

monitoring, it could be improved by supporting several encoding schemes and multiple 

application layer protocols. Another important consideration would be a mechanism 

to focus the network content monitoring on a single application, which enables 

activation of extended content analysis in a resource-constrained system. 
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